首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4721篇
  免费   1995篇
  国内免费   218篇
测绘学   23篇
大气科学   4篇
地球物理   3709篇
地质学   2210篇
海洋学   287篇
天文学   329篇
综合类   4篇
自然地理   368篇
  2024年   3篇
  2023年   2篇
  2022年   1篇
  2021年   71篇
  2020年   85篇
  2019年   266篇
  2018年   465篇
  2017年   484篇
  2016年   515篇
  2015年   460篇
  2014年   467篇
  2013年   779篇
  2012年   453篇
  2011年   416篇
  2010年   346篇
  2009年   247篇
  2008年   325篇
  2007年   226篇
  2006年   227篇
  2005年   226篇
  2004年   188篇
  2003年   180篇
  2002年   148篇
  2001年   137篇
  2000年   146篇
  1999年   34篇
  1998年   7篇
  1997年   12篇
  1996年   1篇
  1995年   2篇
  1994年   4篇
  1993年   2篇
  1992年   1篇
  1991年   7篇
  1989年   1篇
排序方式: 共有6934条查询结果,搜索用时 15 毫秒
961.
The beneficial or detrimental role of battered piles on the dynamic response of piled foundations has not been yet fully elucidated. In order to shed more light on this aspect, kinematic interaction factors of deep foundations with inclined piles, are provided for single‐battered piles, as well as for 2 × 2 and 3 × 3 groups of piles subjected to vertically incident plane shear S waves. Piles are modelled as linear‐elastic Bernoulli beams, whereas soil is assumed to be a linear, isotropic, homogeneous viscoelastic half‐space. Different pile group configurations, pile‐soil stiffness ratios, and rake angles are considered. The relevance and main trends observed in the influence of the rake angle on the kinematic interaction factors of the analysed foundations are inferred from the presented results. An important dependence of the kinematic interaction factors on the rake angle is observed together with the existence of an inclination angle at which cap rotation and excitation become out of phase in the low‐to‐mid frequency range. The existence of a small batter angle that provides minimum cap rotation is also shown. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
962.
The present study is focused on the analysis of the mean wall friction velocity on a surface including roughness elements exposed to a turbulent boundary layer. These roughness elements represent non‐erodible particles over an erodible surface of an agglomeration of granular material on industrial sites. A first study has proposed a formulation that describes the evolution of the friction velocity as a function of geometrical parameters and cover rate with different uniform roughness distributions. The present simulations deal with non‐uniform distributions of particles with a random sampling of diameters, heights, positions and arrangements. The evolution (relative to geometrical parameters of the roughness elements) of the friction velocity for several non‐uniform distributions of roughness elements was analysed by the equation proposed in the literature and compared to the results obtained with the numerical simulations. This comparison showed very good agreement. Thus, the formulation developed for uniform particles was found also to be valid for a larger spectrum of particles noted on industrial sites. The present work aims also to investigate in detail the fluid mechanics over several roughness particles. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
963.
Flow within the interfacial layer of gravel‐bed rivers is poorly understood, but this zone is important because the hydraulics here transport sediment, generate flow structures and interact with benthic organisms. We hypothesized that different gravel‐bed microtopographies generate measurable differences in hydraulic characteristics within the interfacial layer. This was tested using a high density of spatially and vertically distributed, velocity time series measured in the interfacial layers above three surfaces of contrasting microtopography. These surfaces had natural water‐worked textures, captured in the field using a casting procedure. Analysis was repeated for three discharges, with Reynolds numbers between 165000 and 287000, to evaluate whether discharge affected the impact of microtopography on interfacial flows. Relative submergence varied over a small range (3.5 to 8.1) characteristic of upland gravel‐bed rivers. Between‐surface differences in the median and variance of several time‐averaged and turbulent flow parameters were tested using non‐parametric statistics. Across all discharges, microtopographic differences did not affect spatially averaged (median) values of streamwise velocity, but were associated with significant differences in its spatial variance, and did affect spatially averaged (median) turbulent kinetic energy. Sweep and ejection events dominated the interfacial region above all surfaces at all flows, but there was a microtopographic effect, with Q2 and Q4 events less dominant and structures less persistent above the surface with the widest relief distribution, especially at the highest Reynolds number flow. Results are broadly consistent with earlier work, although this analysis is unique because of the focus on interfacial hydraulics, spatially averaged ‘patch scale’ metrics and a statistical approach to data analysis. An important implication is that observable differences in microtopography do not necessarily produce differences in interfacial hydraulics. An important observation is that appropriate roughness parameterizations for gravel‐bed rivers remain elusive, partly because the relative contributions to flow resistance of different aspects of bed microtopography are poorly constrained. © 2014 The Authors. Earth Surface Processes and Landforms Published by John Wiley & Sons Ltd.  相似文献   
964.
Saturated floodplains in Arctic deltas provide conditions favourable for frost mound growth. Little work has been reported from these settings to determine the origin of frost mounds and the controls on their distribution, to assess the longevity of individual mounds, or to quantify variation of mound distribution over time. A case study is presented on low mounds in low‐centred syngenetic ice‐wedge polygons of Big Lake Delta Plain, outer Mackenzie Delta. In 2008 and 2009, 12 mounds were examined by drilling to describe their morphologic variations and to investigate their growth processes. The mounds, containing a core of ice 15 to 58 cm thick, were less than 1 m high and 3 · 7 to 8 · 5 m in diameter; other mounds were over 10 m long. Organic inclusions in the ice, bubble densities, electrical conductivity profiles, and ice‐crystal structure indicated that the mounds were hydrostatic frost blisters. Up to six frost blisters were found within individual polygons due to the relatively small volume of water needed to create each mound. Frost‐blister densities, of greater than 1700 km–2, increased toward the wet centres of alluvial islands down gentle topographic gradients. The frost blisters were perennial, with individuals remaining identifiable on aerial photographs and satellite images for up to 10 years. Frost blisters collapsed along dilation cracks opened by hydrostatic uplift and by thawing from their sides caused by snow drifting and water ponding. Cyclical growth and decay of the mounds may degrade the visible polygonal network over time. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
965.
Real‐time hybrid simulation (RTHS) is increasingly being recognized as a powerful cyber‐physical technique that offers the opportunity for system evaluation of civil structures subject to extreme dynamic loading. Advances in this field are enabling researchers to evaluate new structural components/systems in cost‐effective and efficient ways, under more realistic conditions. For RTHS, performance metric clearly needs to be developed to predict and evaluate the accuracy of various partitioning choices while incorporating the dynamics of the transfer system, and computational/communication delays. In addition, because of the dynamics of the transfer system, communication delays, and computation delays, the RTHS equilibrium force at the interface between numerical and physical substructures is subject to phase discrepancy. Thus, the transfer system dynamics must be accommodated by appropriate actuator controllers. In this paper, a new performance indicator, predictive performance indicator (PPI), is proposed to assess the sensitivity of an RTHS configuration to any phase discrepancy resulting from transfer system dynamics and computational/communication delays. The predictive performance indicator provides a structural engineer with two sets of information as follows: (i) in the absence of a reference response, what is the level of fidelity of the RTHS response? and (ii) if needed, what partitioning adjustments can be made to effectively enhance the fidelity of the response? Moreover, along with the RTHS stability switch criterion, this performance metric may be used as an acceptance criteria for conducting single‐degree‐of‐freedom RTHS. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
966.
Most of the studies related to the modeling of masonry structures have by far investigated either the in‐plane (IP) or the out‐of‐plane (OP) behavior of walls. However, seismic loads mostly impose simultaneous IP and OP demands on load‐bearing or shear masonry walls. Thus, there is a need to reconsider design equations of unreinforced masonry walls by taking into account bidirectional effects. The intent of this study is to investigate the bidirectional behavior of an unreinforced masonry wall with a typical aspect ratio under different displacement‐controlled loading directions making use of finite element analysis. For this purpose, the numerical procedure is first validated against the results of the tests on walls with different failure modes conducted by the authors. Afterward, the response of the wall systems is evaluated with increasing top displacement having different orientations. A set of 19 monotonic and three cyclic loading analyses are performed, and the results are discussed in terms of the variation of failure modes and load–displacement diagrams. Moreover, the results of wall capacity in each loading condition are compared with those of the ASCE41‐06 formulations. The results indicate that the direction of the resultant force, vectorial summation of IP and OP forces, of the wall is initially proportional to the ratio of stiffness in the IP and the OP directions. However, with the increase of damage, the resultant force direction inclines towards the wall's longitudinal direction regardless of the direction of the imposed displacement. Finally, recommendations are made for applicability of ASCE41‐06 formulations under different bidirectional loading conditions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
967.
The self‐centering rocking steel frame is a seismic force resisting system in which a gap is allowed to form between a concentrically braced steel frame and the foundation. Downward vertical force applied to the rocking frame by post‐tensioning acts to close the uplifting gap and thus produces a restoring force. A key feature of the system is replaceable energy‐dissipating devices that act as structural fuses by producing high initial system stiffness and then yielding to dissipate energy from the input loading and protect the remaining portions of the structure from damage. In this research, a series of large‐scale hybrid simulation tests were performed to investigate the seismic performance of the self‐centering rocking steel frame and in particular, the ability of the controlled rocking system to self‐center the entire building. The hybrid simulation experiments were conducted in conjunction with computational modules, one that simulated the destabilizing P‐Δ effect and another module that simulated the hysteretic behavior of the rest of the building including simple composite steel/concrete shear beam‐to‐column connections and partition walls. These tests complement a series of quasi‐static cyclic and dynamic shake table tests that have been conducted on this system in prior work. The hybrid simulation tests validated the expected seismic performance as the system was subjected to ground motions in excess of the maximum considered earthquake, produced virtually no residual drift after every ground motion, did not produce inelasticity in the steel frame or post‐tensioning, and concentrated the inelasticity in fuse elements that were easily replaced. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
968.
This paper proposes a new set of probabilistic joint shear strength models using the conventional multiple linear regression method, and advanced machine‐learning methods of multivariate adaptive regression splines (MARS) and symbolic regression (SR). In order to achieve high‐fidelity regression models with reduced model errors and bias, this study constructs extensive experimental databases for reinforced and unreinforced concrete joints by collecting existing beam‐column joint subassemblage tests from multiple sources. Various influential parameters that affect joint shear strength such as material properties, design parameters, and joint configuration are investigated through tests of statistical significance. After performing a set of regression analyses, the comparison of simulation results indicates that MARS approach is the best estimation method. Moreover, the accuracy of analytical predictions of the derived MARS model is compared with that of existing joint shear strength relationships. The comparison results show that the proposed model is more accurate compared to existing relationships. This joint shear strength prediction model can be readily implemented into joint response models for evaluation of earthquake performance and inelastic responses of building frames. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
969.
We present new data about the morphological and stratigraphic evolution and the rates of fluvial denudation of the Tavoliere di Puglia plain, a low‐relief landscape representing the northernmost sector of the Pliocene‐Pleistocene foredeep of the southern Apennines. The study area is located between the easternmost part of the southern Apennine chain and the Gargano promontory and it is characterized by several orders of terraced fluvial deposits, disconformably overlying lower Pleistocene marine clay and organized in a staircase geometry, which recorded the emersion and the long‐term incision history of this sector since mid‐Pleistocene times. We used the spatial and altimetric distribution of several orders of middle to late Pleistocene fluvial terraces in order to perform paleotopographic reconstruction and GIS‐aided eroded volumes estimates. Then, we estimated denudation rates on the basis of the terraces chronostratigraphy, supported by published OSL and AAR dating. Middle to upper Pleistocene denudation rates estimated by means of such an approach are slightly lower than 0.1 mm yr‐1, in good agreement with short‐term data from direct and indirect evaluation of suspended sediment yield. The analysis of longitudinal river profiles using the stream power erosion model provided additional information on the incision rates of the studied area. Middle to late Quaternary uplift rates (about 0.15 mm yr‐1), calculated on the basis of the elevation above sea level of marine deposits outcropping in the easternmost sector of the study area, are quite similar to the erosion rates average value, thus suggesting a steady‐state fluvial incision. The approach adopted in this work has demonstrated that erosion rates traditionally obtained by quantitative geomorphic analysis and ksn estimations can be successfully integrated to quantify rates of tectonic or geomorphological processes of a landscape approaching steady‐state equilibrium. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
970.
Accurate mapping of water surface boundaries in rivers is an important step for monitoring water stages, estimating discharge, flood extent, and geomorphic response to changing hydrologic conditions, and assessing riverine habitat. Nonetheless, it is a challenging task in spatially and spectrally heterogeneous river environments, commonly characterized by high spatiotemporal variations in morphology, bed material, and bank cover. In this study, we investigate the influence of channel morphology and bank characteristics on the delineation of water surface boundaries in rivers using high spatial resolution passive remote sensing and a template‐matching (object‐based) algorithm, and compare its efficacy with that of Support Vector Machine (SVM) (pixel‐based) algorithm. We perform a detailed quantitative evaluation of boundary‐delineation accuracy using spatially explicit error maps in tandem with the spatial maps of geomorphic and bank classes. Results show that template matching is more successful than SVM in delineating water surface boundaries in river sections with spatially challenging geomorphic landforms (e.g. sediment bar structures, partially submerged sediment deposits) and shallow water conditions. However, overall delineation accuracy by SVM is higher than that of template matching (without iterative hierarchical learning). Vegetation and water indices, especially when combined with texture information, improve the accuracy of template matching, for example, in river sections with overhanging trees and shadows – the two most problematic conditions in water surface boundary delineation. By identifying the influence of channel morphology and bank characteristics on water surface boundary mapping, this study helps determine river sections with higher uncertainty in delineation. In turn, the most suitable methods and data sets can be selectively utilized to improve geomorphic/hydraulic characterization. The methodology developed here can also be applied to similar studies on other geomorphic landforms including floodplains, wetlands, lakes, and coastlines. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号