首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83篇
  免费   18篇
  国内免费   10篇
测绘学   3篇
大气科学   7篇
地球物理   21篇
地质学   42篇
海洋学   25篇
天文学   1篇
综合类   1篇
自然地理   11篇
  2022年   1篇
  2021年   1篇
  2020年   4篇
  2019年   3篇
  2018年   4篇
  2017年   1篇
  2016年   6篇
  2015年   2篇
  2014年   5篇
  2013年   4篇
  2012年   5篇
  2011年   1篇
  2010年   5篇
  2009年   10篇
  2008年   5篇
  2007年   2篇
  2006年   4篇
  2005年   7篇
  2004年   2篇
  2003年   3篇
  2002年   4篇
  2001年   7篇
  2000年   6篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1994年   3篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1988年   2篇
  1985年   2篇
  1980年   1篇
排序方式: 共有111条查询结果,搜索用时 15 毫秒
61.
Wind tunnel and field calibration of five aeolian sand traps   总被引:4,自引:0,他引:4  
The efficiency of five aeolian sand samplers was tested via wind tunnel experiments and field measurements. The samplers were: the Big Spring Number Eight (BSNE) sampler, the Modified Wilson and Cooke (MWAC) sampler, the Suspended Sediment Trap (SUSTRA), the Pollet catcher (POLCA), and the saltiphone. In the wind tunnel, the samplers were calibrated against an isokinetic sampler (a modified Sartorius SM 16711 sampler with adjustable flow rate), and this for three sand types (median diameter: 132, 194 and 287 μm) and five wind speeds (ranging from 6.6 to 14.4 m s−1). In the field, seven calibration tests of two weeks each were conducted. The absolute efficiencies of the BSNE, MWAC and POLCA are more or less comparable and vary between 70% and 120%, depending on sediment size and wind speed. For the SUSTRA, the efficiency is somewhat lower for fine sands and for wind speeds above 11 m s−1. Finally, the saltiphone can accurately detect the periods of saltation transport, but in its current version, the instrument is not accurate when measuring the absolute saltation flux. The most recommendable sampler in the test is the MWAC, not only because of its high efficiency, but also because its efficiency is independent of wind speed.  相似文献   
62.
煤心采取质量是影响煤田地质勘探成果质量的重要因素,本文介绍一种深孔(500~1000m)煤心采取器,其煤心采取率达到90%以上,且能保证煤心样品的代表性。   相似文献   
63.
The monitoring of bedload flux under flash flood conditions has been successfully achieved since 1992 using slot samplers in the semiarid Nahal Eshtemoa. In the present study, a surrogate bedload monitoring technique - the Japanese plate microphone - has been deployed and calibrated against data from the slot samplers. Since a slot sampler has a sensitivity threshold that becomes especially important when transport rates are low, different averaging periods should be considered for high and low fluxes. In order to overcome the deficiencies of time-based aggregation used hitherto, we have developed a new method involving mass aggregation and commensurably variable intervals, thereby enabling a more accurate analysis and optimizing the bedload sampler's capabilities. The data derived with this new method has then been utilized to calibrate the Japanese plate microphone. The Eshtemoa is an ephemeral gravel bed channel with a high proportion of fine gravel (< 0.02 m); for these conditions, acoustic sensors have not been calibrated as yet. Two multiple linear regression models incorporating the effect of median bedload grain size on pulse rate have been established to predict bedload flux and cumulative transported bedload mass. The coefficients in these models are statistically significant. Good predictions are obtained for bedload flux (adj. r2 = 0.83) and for cumulative bedload mass (adj. r2 = 0.98) during flood recession. Overall, the multiple linear regression models, used in conjunction with the mass aggregation method of estimating bedload flux, suggest that field calibration of acoustic devices is feasible under these conditions for ca. 90% of the duration of bedload transport. © 2020 John Wiley & Sons, Ltd.  相似文献   
64.
为了获得连续、低扰动、超长的深海海底沉积物样品,研制了一套可应用于最大水深6 000 m,最长取样可达25 m的可视可控轻型沉积物柱状取样系统。本套设备主要包括甲板控制单元、取样系统和立式收放机构3部分。在取样过程中,本系统充分利用动能和深海液压锤夯击双动力组合,即取样过程包括前期的重力贯入和后期的夯击取样两个过程。液压锤夯击机构的配置使取样器在不显著增加自身重量的前提下,完成超长、连续、低扰动的深海沉积物柱状样采集工作。取样器的组合与拆卸采用立式吊装的方式,极大地降低了取样过程中的工作量和所需甲板作业空间。水下监测系统的配置解决了以往盲采样的弊端。除此之外,本取样器还设有多个标准通用端口,可以扩展为多种设备的集成平台,完成多种数据的采集。目前本套设备已经成功进行了海试,并作为主要沉积物取样设备成功应用于多个海上调查航次,取得了一系列连续、低扰动的柱状样品,有效地提高了我国深海可视可控柱状取样的技术水平。  相似文献   
65.
基于实际气体状态方程的深海采样压力补偿技术   总被引:1,自引:0,他引:1  
压缩气体通常用于深海压力保持采样器的压力补偿。回收的流体样品的压力和体积与预充气体高度相关。为了更好地理解高压下气体的行为,我们提出了一个新的基于压缩因子Z的实际气体状态方程,该方程是从实验数据得出的。然后基于该经验气态方程引入了样品压力和体积的理论计算方法。最后,通过采样器进行了在115MPa下的高压模拟采样实验,很好地验证了本文所提出的计算理论。  相似文献   
66.
Collecting a representative time‐integrated sample of fluvial fine‐grained suspended sediment (<63 μm) is an important requirement for the understanding of environmental, geomorphological, and hydrological processes operating within watersheds. This study (a) characterized the hydrodynamic behaviour of a commonly used time‐integrated fine sediment sampler (TIFSS) using an acoustic Doppler velocimeter (ADV) in controlled laboratory conditions and (b) measured the mass collection efficiency (MCE) of the sampler by an acoustic Doppler current profiler under field conditions. The laboratory results indicated that the hydrodynamic evaluations associated with the original development of the TIFSS involved an underestimation of the inlet flow velocity of the sampler that results in a significant overestimation of the theoretical MCE. The ADV data illustrated that the ratio of the inlet flow velocity of the sampler to the ambient velocity was 87% and consequently, it can be assumed that a representative sample of the ambient fine suspended particles entered into the sampler. The field results showed that the particle size distribution of the sediment collected by the TIFSS was statistically similar to that for the ambient sediment in the Red River, Manitoba, Canada. The MCE of the TIFSS in the field trials appeared to be as low as 10%. Collecting a representative sample in the field was consistent with the previous findings that the TIFSS is a suitable sampler for the collection of a representative sample of sufficient mass (e.g., >1 g) for the investigation of the properties of fluvial fine‐grained suspended sediment. Hydrodynamic evaluation of the TIFSS under a wider range of hydraulic conditions is suggested to assess the performance of the sampler during high run‐off events.  相似文献   
67.
Our ability to understand erosion processes in semi‐arid ecosystems depends on establishing relationships between rainfall and runoff. This requires collection of extensive and accurate hydrologic and sediment data sets. A supercritical flume with a total load traversing slot sediment sampler used on several sites at the Walnut Gulch Experimental Watershed (WGEW) near Tombstone, AZ has proven to be a reliable way to measure flow and sediment discharge from small watersheds. However, it requires installation of a costly structure that is only suitable for relatively small flows. A more commonly used method based on ease of installation and expense is the pump sampler. One example of this is a set of instrumentation developed by the Australian Commonwealth Scientific and Industrial Research Organization (CSIRO), in which the pump sediment sampler is part of an in‐channel, fully automated system for measuring water velocity, depth, turbidity and collecting runoff samples. A 3.7 ha arid watershed at WGEW was instrumented with both systems and hydrologic and sediment data were collected and compared during a 2 year period. Total sediment yield for the entire period measured by the CSIRO pump sampler (11.6 t ha‐1) was similar to that by traversing slot sampler (11.5 t ha‐1). The pump sampler accurately estimated the amount of fine (< 0.5 mm) sediment fractions exported, but consistently underestimated the coarse (>0.5 mm) sediment fractions. Median sediment diameter of samples collected by traversing slot and pump sampler were 0.32 and 0.22 mm, respectively. This study outlines the benefits and limitations of the pump sampler based system for monitoring sediment concentration and yield in high‐energy headwater catchments, and makes recommendations for improvement of its performance. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
68.
Delivery of fine sediment to fluvial systems is of considerable concern given the physical and ecological impacts of elevated levels in drainage networks. Although it is possible to measure the transfer of fine sediment at high frequency by using a range of surrogate and automated technologies, the demands for assessing sediment flux and sediment properties at multiple spatially distributed locations across catchments can often not be met using established sampling techniques. The time‐integrated mass‐flux sampler (TIMS) has the potential to bridge this gap and further our understanding of fine sediment delivery in fluvial systems. However, these devices have undergone limited testing in the field. The aim of this paper was to provide a critical validation of TIMS as a technique for assessing fluvial fine sediment transfer. Fine sediment flux and sediment properties were assessed over 2 years with individual sampling periods of approximately 30 days. Underestimation of sediment flux ranged between 66% and 99% demonstrating that TIMS is unsuitable for assessing absolute sediment loads. However, assessment of relative efficiency showed that six of seven samplers produced statistically strong relationships with the reference sediment load (P < 0.05). Aggregated data from all sites produced a highly significant relationship between reference and TIMS loads (R2 = 0.80; P < 0.001) demonstrating TIMS may be suitable for characterizing patterns of suspended sediment transfer. Testing also illustrated a consistency in sediment properties between multiple samplers in the same channel cross section. TIMS offers a useful means of assessing spatial and temporal patterns of fine sediment transfer across catchments where expensive monitoring frameworks cannot be commissioned. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
69.
潘德元  李小杰  郑继天  叶成明 《探矿工程》2014,41(5):50-52,65
深部流体样品是深井工程的重要组成部分,介绍了获取深部流体样品的一种方法---U形管采样技术。通过对U形管采样技术原理进行研究分析,设计研制U形管取样器具并进行野外试验,取样深度达到井深500 m,最大流量达到40 L/h,取得了较好的效果。  相似文献   
70.
The dialysis porewater sampler, type Hesslein, allows sampling of sediment interstitial water according to a continuous gradient between sediment and the water column. Its equilibration time fluctuates according to the nature of sediment, so it has to be measured in each kind of sediment. The aim of this work is to develop a physical diffusion model in order to determine an equilibration time without using extensive field experiments. The model is validated by real nutrient concentration profiles obtained on two estuaries under different climates, moderate climate (estuary of the Seine) and tropical dry climate (estuary of Somone, Senegal). The results highlight that the equilibration of the dialysis porewater sampler is not homogeneous over the full sediment height investigated. Other sediment characteristics as compaction, rate of bioturbation or bacterial density must be taken into account in order to find a well-calculated value of the equilibration time.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号