首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   142篇
  免费   9篇
测绘学   2篇
大气科学   1篇
地球物理   12篇
地质学   6篇
海洋学   125篇
综合类   4篇
自然地理   1篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   13篇
  2018年   1篇
  2017年   14篇
  2016年   7篇
  2015年   5篇
  2014年   6篇
  2013年   1篇
  2012年   3篇
  2011年   10篇
  2010年   7篇
  2009年   8篇
  2008年   11篇
  2007年   16篇
  2006年   13篇
  2005年   2篇
  2004年   3篇
  2003年   7篇
  2002年   3篇
  2001年   4篇
  2000年   4篇
  1999年   5篇
  1998年   2篇
  1995年   2篇
排序方式: 共有151条查询结果,搜索用时 46 毫秒
91.
The present paper describes a mathematical model in which the fluid motion inside a U-tank is nonlinearly coupled to the heave, roll and pitch motions of the ship. The main purpose of the investigation is centred on the control of roll motion in the case of parametric resonance in longitudinal waves. A transom stern small vessel, known to be quite prone to parametric amplification, is employed in the study. Four tank designs are employed in order to study the influence of tank mass, tank natural frequency and tank internal damping on the control of parametric rolling at different head seas conditions. Additionally, the influence of the vertical position of the tank is also investigated. The main results are presented in the form of limits of stability, with encounter frequency and wave amplitudes as parameters. Distinct dynamical characteristics are discussed and conclusions are drawn on the relevant parameters for the efficient control of the roll amplifications in head seas.  相似文献   
92.
The structural dynamic behaviour of a fast patrol boat is studied with two- and three-dimensional idealizations for dry-hull analysis. A preliminary two-dimensional beam analysis is conducted by means of the Prohl-Myklestad method to derive a first estimate of the first four symmetric mode shapes. A more complex three-dimensional finite element model is developed in order to evaluate the modal characteristics for both symmetric and coupled anti-symmetric distortions, with the emphasis placed on the former.  相似文献   
93.
Ivo  &#x;ime  Stipe 《Ocean Engineering》2008,35(5-6):523-535
The importance of hydroelastic analysis of large and flexible container ships of today is pointed out. A methodology for investigation of this challenging phenomenon is drawn up and a mathematical model is worked out. It includes definition of ship geometry, mass distribution, structure stiffness, and combines ship hydrostatics, hydrodynamics, wave load, ship motion and vibrations. Based on the presented theory, a computer program is developed and applied for hydroelastic analysis of a flexible segmented barge for which model test results of motion and distortion in waves have been available. A correlation analysis of numerical simulation and measured response shows quite good agreement of the transfer functions for heave, pitch, roll, vertical and horizontal bending and torsion. The tool checked in such a way can be further used for reliable hydroelastic analysis of ship-like structures.  相似文献   
94.
On the parametric rolling of ships using a numerical simulation method   总被引:2,自引:0,他引:2  
B.C. Chang   《Ocean Engineering》2008,35(5-6):447-457
This paper has shown a numerical motion simulation method which can be employed to study on parametric rolling of ships in a seaway. The method takes account of the main nonlinear terms in the rolling equation which stabilize parametric rolling, including the nonlinear shape of the righting arm curve, nonlinear damping and cross coupling among all 6 degrees of freedom. For the heave, pitch, sway and yaw motions, the method uses response amplitude operators determined by means of the strip method, whereas the roll and surge motions of the ship are simulated, using nonlinear motion equations coupled with the other 4 degrees of freedom. For computing righting arms in seaways, Grim's effective wave concept is used. Using these transfer functions of effective wave together with the heave and pitch transfer functions, the mean ship immersion, its trim and the effective regular wave height are computed for every time step during the simulation. The righting arm is interpolated from tables, computed before starting the simulation, depending on these three quantities and the heel angle. The nonlinear damping moment and the effect of bilge keels are also taken into account. The numerical simulation tool has shown to be able to model the basic mechanism of parametric rolling motions. Some main characteristics of parametric rolling of ships in a seaway can be good reproduced by means of the method. Comprehensive parametric analyses on parametric rolling amplitude in regular waves have been carried out, with that the complicated parametric rolling phenomena can be understood better.  相似文献   
95.
96.
Nitrogen oxide (NOx) emissions from marine diesel engines pose a hazard to human health and the environment. From 2021, demanding emissions limits are expected to be applied to sea areas that the Royal Navy (RN) accesses. We analyze how these future constraints affect the choice of NOx abatement systems for RN ships, which are subject to more design constraints than civilian ships. A weighted matrix approach is used to facilitate a quantitative assessment.  相似文献   
97.
This study investigates the occurrence of irregular frequencies in a seakeeping analysis of a ship moving with forward speed. This is achieved by formulating the interior virtual flow Dirichlet or Neumann eigenvalue problem. A theoretical analysis of a rectangular box travelling and oscillating in waves reveals that in the forward speed case, apart from the singular irregular frequency at zero encounter frequency, no irregular frequencies exist whilst at zero forward speed multiple irregular frequencies are observed confirming previous findings. These theoretical predictions are further verified by numerical calculations involving the rectangular box and a Series 60, CB=0.70, hull.  相似文献   
98.
The ship routing problem can be known as a multi-objective problem. Since the operation strategy is influenced by ocean environments, e.g. wind, waves or ocean currents, it is therefore weather routed. In this study, the three-dimensional modified isochrone (3DMI) method utilizing the recursive forward technique and floating grid system for the ship tracks is applied to globally search for the optimum route. The proposed method considers two types of routing strategies, i.e. ETA (Estimated Time of Arrival) routing and FUEL (FUEL-saving) routing, with different constraints, such as land boundaries, significant wave heights, engine revolution speeds and roll responses. As a result, it is verified that the robustness of the proposed method appears to be a practical tool by adjusting the safety threshold for the trade-off of ship efficiency and economics.  相似文献   
99.
Results of experimental study of aerodynamic forces acting on two ship models are presented and discussed in this paper. Measurements have been performed in a wind tunnel utilizing floating LNG platform and LNG carrier models. Tests were carried out for different cases of the position and location of the models, starting from testing single models at full range of flow attack angles and finishing with investigation of interaction effects between two vessels in wind condition. Results are presented in the graphical form of the plots for the surge and sway force and yaw moment coefficients and compared with some other experimental data and estimates obtained with the help of a generic approximate method.  相似文献   
100.
Bottom ventilated cavitation has been proven as a very effective drag reduction technology for river ships and planning boats. The ability of this technology to withstand the sea wave impact usual for seagoing ships depends on the ship bottom shape and could be enhanced by some active flow control devices. Therefore, there is the need in numerical tools to estimate the effects of bottom changes and to design such devices. The fundamentals of active flow control for the ship bottom ventilated cavitation are considered here on the basis of a special model of cavitating flows. This model takes into account the air compressibility in the cavity, as well as the multi-frequency nature of the incoming flow in wavy seas and of the cavity response on perturbations by incoming flow. The numerical method corresponding to this model was developed and widely manifested with an example of a ship model tested in a towing tank at Froude numbers between 0.4 and 0.7.The impact of waves in head seas and following seas on cavities has been studied in the range of wavelengths from 0.45 to 1.2 of the model (or ship) length. An oscillating cavitator-spoiler was considered as the flow controlling devices in this study. The oscillation magnitude and the phase shift between cavitator oscillation and the incoming waves have been varied to determine the best flow control parameters. The main results of the provided computational analysis include oscillations of cavity surface, of the pressure in cavity and of the moment of hydrodynamic load on the cavitator. The major part of computations has been carried out for the flap oscillating at the frequency coinciding with the wave frequency, but the effect of a frequency shift is also analyzed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号