首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6503篇
  免费   994篇
  国内免费   1516篇
测绘学   1027篇
大气科学   123篇
地球物理   2074篇
地质学   3655篇
海洋学   897篇
天文学   29篇
综合类   806篇
自然地理   402篇
  2024年   12篇
  2023年   64篇
  2022年   151篇
  2021年   188篇
  2020年   222篇
  2019年   320篇
  2018年   225篇
  2017年   304篇
  2016年   311篇
  2015年   334篇
  2014年   358篇
  2013年   342篇
  2012年   355篇
  2011年   462篇
  2010年   332篇
  2009年   477篇
  2008年   507篇
  2007年   476篇
  2006年   404篇
  2005年   324篇
  2004年   351篇
  2003年   350篇
  2002年   295篇
  2001年   233篇
  2000年   233篇
  1999年   209篇
  1998年   176篇
  1997年   182篇
  1996年   159篇
  1995年   124篇
  1994年   119篇
  1993年   108篇
  1992年   84篇
  1991年   52篇
  1990年   44篇
  1989年   34篇
  1988年   31篇
  1987年   20篇
  1986年   14篇
  1985年   6篇
  1984年   5篇
  1983年   4篇
  1982年   3篇
  1980年   2篇
  1979年   3篇
  1975年   1篇
  1954年   3篇
排序方式: 共有9013条查询结果,搜索用时 31 毫秒
71.
本文分析了雷达观测结果,发现近海海面上的水汽向上输送随季节而变化,由于季节的变化和不同的天气情况,海表面大气现象在雷达中有不同的显示,根据这些显示得到了不同的信息,由此而得出春秋两季海表面水汽向上输送量的不同。  相似文献   
72.
波浪经过网衣的特性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
依据波浪理论,分析了波浪经过网衣后的流体特性和边界条件,研究了网衣的波浪水动力、波浪透射系数与网衣尺度、特征参数、波浪参数等的关系。设计预加张力放射系泊法进行网衣构件水槽波浪试验。试验构件由10种PE网衣和HDPE框架装配而成,试验工况是规则波,周期为0·8—2·0s,波高为50—250mm。结果表明,作用在网衣上的水平波浪力变化规律与波浪基本一致,呈现周期性和不对称性变化;波浪力变化曲线呈现司托克斯二阶波形状,波峰较陡,波谷较平坦,和波面图相似;网衣水平波浪力周期峰值大约与波高的2·6次方、波长的0·8次方成比例,与网衣宽度l线性相关;随着特征参数d/a增大,网衣波浪力呈线性增加变化,透射系数减少,网衣消浪能力主要集中在网衣水表层。同时设计多层网衣组合的柔性浮式防波堤波浪试验,其消浪能力除了与网衣尺寸、特征参数等相关以外,还与网衣间隔距离有一定的关系。水槽试验时波浪最小透射系数下降到71%左右,从经济、实用角度表明,可用网衣来制作能防护渔业设施的柔性浮式防波堤。  相似文献   
73.
两参量的海面阻力系数模式的探讨   总被引:4,自引:0,他引:4  
汪炳祥 《海洋与湖沼》1997,28(1):96-103
从风浪的能量平衡方程出发,引进若干风要素与波要素以及波要素之间的定性关系,经演算可导出海面阻力系数(Cp)或是风速(U)和波龄(β)或是U和波高(H)的函数,然后沿用最小二乘法,终将得出4组12个回归方程。当β(或β)或H为某一给定值,惟有U为唯一参量时,所提各式均可简化为非线性方程:CD=a+b,U+c.U^2;式中a,b和c为三个经验系数,就所检验的例子而言,本文的结果与实际的符合前人的为好。  相似文献   
74.
A finite-difference scheme and a modified marker-and-cell (MAC) algorithm have been developed to investigate the interactions of fully nonlinear waves with two- or three-dimensional structures of arbitrary shape. The Navier–Stokes (NS) and continuity equations are solved in the computational domain and the boundary values are updated at each time step by the finite-difference time-marching scheme in the framework of a rectangular coordinate system. The fully nonlinear kinematic free-surface condition is implemented by the marker-density function (MDF) technique developed for two fluid layers.To demonstrate the capability and accuracy of the present method, the numerical simulation of backstep flows with free-surface, and the numerical tests of the MDF technique with limit functions are conducted. The 3D program was then applied to nonlinear wave interactions with conical gravity platforms of circular and octagonal cross-sections. The numerical prediction of maximum wave run-up on arctic structures is compared with the prediction of the Shore Protection Manual (SPM) method and those of linear and second-order diffraction analyses based on potential theory and boundary element method (BEM). Through this comparison, the effects of non-linearity and viscosity on wave loading and run-up are discussed.  相似文献   
75.
LU  Yongjun 《中国海洋工程》2002,16(1):107-122
A 2-D mathematical model of tidal current and sediment has been developed for the Oujiang Estuary and the WenzhouBay. This model accomodates complicated features including multiple islands, existence of turbidity, and significant differ-ence in size distribution of bed material. The governing equations for non-uniform suspended load and bed load transport arepresented in a boundary-fitted orthogonal curvilinear coordinate system. The numerical solution procedures along with theirinitial conditions, boundary conditions, and movable boundary technique are presented. Strategies for computation of thecritical condition of deposition or erosion, sediment transport capacity, non-uniform bed load discharge, etc. are suggested.The model verification computation shows that, the tidal levels computed from the model are in good agreement with the fielddata at the 18 tidal gauge stations. The computed velocities and flow directions also agree well with the values measuredalong the totally 52 synchronously observed verticals distributed over 8 cross sections. The computed tidal water throughputsthrough the Huangda‘ao cross section are close to the measured data. And the computed values of bed deformation fromYangfushan to the estuary outfall and in the outer-sea area are in good agreement with the data observed from 1986 to 1992.The changes of tidal volumes through the estuary, velocities in different channels and the bed form due to the influence of thereclamation project on the Wenzhou shoal are predicted by means of this model.  相似文献   
76.
77.
The dimensions of sand ripples in full-scale oscillatory flows   总被引:1,自引:0,他引:1  
New large-scale experiments have been carried out in two oscillatory flow tunnels to study ripple regime sand suspension and net sand transport processes in full-scale oscillatory flows. The paper focuses on ripple dimensions and the new data are combined with existing data to make a large dataset of ripple heights and lengths for flows with field-scale amplitudes and periods. A feature of the new experiments is a focus on the effect of flow irregularity. The combined dataset is analysed to examine the range of hydraulic conditions under which oscillatory flow ripples occur, to examine the effects of flow irregularity and ripple three-dimensionality on ripple dimensions and to test and improve existing methods for predicting ripple dimensions.The following are the main conclusions. (1) The highest velocities in a flow time-series play an important role in determining the type of bedform occurring in oscillatory flow. Bedform regime is well characterised by mobility number based on maximum velocity in the case of regular flow and based on the mean of the highest one tenth peak velocities in the case of irregular flow. (2) For field-scale flows, sand size is the primary factor determining whether equilibrium ripples will be 2D or 3D. 2D ripples occur when the sand D50 ≥ 0.30 mm and 3D ripples occur when D50 ≤ 0.22 mm (except when the flow orbital diameter is low). (3) Ripple type (2D or 3D) is the same for regular and irregular flows and ripple dimensions produced by equivalent regular and irregular flows follow a similar functional dependence on mobility number, with mobility number based on maximum velocity in the case of regular flow and based on the mean of the highest one tenth velocities in the case of irregular flow. For much of the ripple regime, ripple dimensions have weak dependency on mobility number and ripple dimensions are similar for regular and irregular flows with the same flow orbital amplitude. However, differences in ripples produced by equivalent regular and irregular flows become significant at the high mobility end of the ripple regime. (4) Ripple dimensions predicted using the Wiberg and Harris formulae are in poor agreement with measured ripple dimensions from the large-scale experiments. Predictions based on the Mogridge et al. and the Nielsen formulae show better overall agreement with the data but also show systematic differences in cases of 3D ripples and ripples generated by irregular flows. (5) Based on the combined large-scale data, modifications to the Nielsen ripple dimension equations are proposed for the heights and lengths of 2D ripples. The same equations apply to regular and irregular flows, but with mobility number appropriately defined. 3D ripples are generally smaller than 2D ripples and estimates of 3D ripple height and length may be obtained by applying multipliers of 0.55 and 0.73 respectively to the 2D formulae. The proposed modified Nielsen formulae provide an improved fit to the large-scale data, accounting for flow irregularity and ripple three-dimensionality.  相似文献   
78.
Estimation of the wave height transformation of shoaling and breaking is essential for the nearshore hydrodynamics and the design of coastal structures. Many empirical formulas have been well recognized to the wave height transformation, but most of them were only applicable for gentle slopes. This paper reports the experimental results of wave shoaling and breaking over the steep slopes to examine the applicability of the previous empirical formulas. Two steep bottom slopes of 1/3 and 1/5, and one gentle slope of 1/10 were conducted in the present experiments. Experimental results show that the shoaling distance of steep slopes become short and the surface waves may be partially reflected from the steep bottom, thus the estimation of wave shoaling using the well-known previous formula did not conform completely to the experimental results. The previous empirical formulas for the wave breaking criteria were also examined, and the modified equations to the steep beaches were proposed in this work. A numerical model was finally adopted to calculate the wave height transformation in the surf zone by introducing the modified breaking index.  相似文献   
79.
In the paper, a hydrodynamic numerical model including wave effect is developed to simulate ship autopilot systems by using the time domain analysis. The PD controller and the sliding mode controller are adopted as the autopilot systems. The differences of simulation results between two controllers are analyzed by cost function composed of heading angle error and rudder deflection, either in calm water or in waves. The results in calm water show that both controllers are tracking well for the desired route with the similar cost function value by tuning the key design parameters. However, the course tracking ability of the controller using sliding mode in waves is generally better even the cost function value is similar.  相似文献   
80.
Wave-induced seabed instability, either momentary liquefaction or shear failure, is an important topic in ocean and coastal engineering. Many factors, such as seabed properties and wave parameters, affect the seabed instability. A non-dimensional parameter is proposed in this paper to evaluate the occurrence of momentary liquefaction. This parameter includes the properties of the soil and the wave. The determination of the wave-induced liquefaction depth is also suggested based on this non-dimensional parameter. As an example, a two-dimensional seabed with finite thickness is numerically treated with the EFGM meshless method developed early for wave-induced seabed responses. Parametric study is carried out to investigate the effect of wavelength, compressibility of pore fluid, permeability and stiffness of porous media, and variable stiffness with depth on the seabed response with three criteria for liquefaction. It is found that this non-dimensional parameter is a good index for identifying the momentary liquefaction qualitatively, and the criterion of liquefaction with seepage force can be used to predict the deepest liquefaction depth.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号