首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1255篇
  免费   167篇
  国内免费   85篇
测绘学   2篇
大气科学   104篇
地球物理   449篇
地质学   94篇
海洋学   774篇
天文学   12篇
综合类   9篇
自然地理   63篇
  2022年   9篇
  2021年   18篇
  2020年   23篇
  2019年   61篇
  2018年   20篇
  2017年   52篇
  2016年   45篇
  2015年   50篇
  2014年   41篇
  2013年   35篇
  2012年   26篇
  2011年   90篇
  2010年   59篇
  2009年   95篇
  2008年   161篇
  2007年   122篇
  2006年   59篇
  2005年   44篇
  2004年   45篇
  2003年   66篇
  2002年   64篇
  2001年   48篇
  2000年   51篇
  1999年   41篇
  1998年   32篇
  1997年   25篇
  1996年   18篇
  1995年   14篇
  1994年   16篇
  1993年   19篇
  1992年   16篇
  1991年   13篇
  1990年   6篇
  1989年   7篇
  1988年   4篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1982年   3篇
  1980年   2篇
排序方式: 共有1507条查询结果,搜索用时 46 毫秒
61.
Environmental vibrations from recent high-speed trains are becoming a special concern in the civil and environmental engineering field since they can give detrimental effects to residents, sensitive equipments and high-tech production facilities in the vicinity of train tacks. Herein, aiming at the vibration mitigation for a specific high-tech industrial area, the low-frequency vibrations from a train viaduct are targeted over an anticipated range. A theoretically designed innovative countermeasure, called honeycomb wave impeding barrier (WIB) for a wave impeding barrier, is introduced and its effects are investigated by computer simulation. The present WIB is based on the wave dispersion phenomenon that can modulate the incoming wavelengths into the shorter wavelengths, creating an apparent wave cut-off characteristic in the wave field across WIB installation area. The shorter wavelengths are further impeded due to the impedance ratio of the WIB walls and in-fill materials and absorbed by the in-fills more. The three-dimensional FEM simulation demonstrates a dramatic reduction effect that is difficult to achieve by conventional measures.  相似文献   
62.
This paper discusses surface displacements, surface strain, rocking, and energy partitioning during reflection-of-plane waves in a fluid-saturated poroelastic half-space. The medium is modeled by Biot's theory, and is assumed to be saturated with inviscid fluid. A linear porosity-modulus relation based on experimental data on sandstones is used to determine the material parameters for Biot's model. Numerical results in terms of angle of incident waves and Poisson's ratio are illustrated for various porosities and degrees of solid frame stiffness. The results show that the amount of solid frame stiffness controls the response of a fluid-saturated porous system. A poroelastic medium with essentially dry-frame stiffness behaves like an elastic medium, and the influence of pore fluid increases as dry-frame stiffness is reduced. The effects of a second P-wave become noticeable in poroelastic media with low dry-frame stiffness.  相似文献   
63.
On the basis of Biot dynamic theory, an analytic solution of two-dimensional scattering and diffraction of plane SV waves by circular cylindrical canyons in a half space of saturated porous media is presented in this paper for the first time. The solution is obtained by employing the Fourier–Bessel series expansion technique. Parametric studies had been carried out, which includes: the angle of incidence, the frequency of the incident SV wave, the porosity of saturated porous medium and the stiffness and Poisson's ratio of the solid-skeleton. All the outcomes are useful for the seismic analysis of the surface topography conditions.  相似文献   
64.
This paper addresses size and boundary effects on wave propagation, fracture pattern development and fragmentation in small scale laboratory-size specimens for model blasting. Small block type specimens are centre-line loaded by linear explosive charges and supersonically detonated. Using elastic wave propagation theory and fracture mechanics it is shown that the type of boundary conditions which prevail at the outer boundary of the cylinder control the extension of bore-hole cracking and fragmentation within the body of the cylinder. In the case of a composite block where a cylindrical core of different material is embedded, the level of fracturing and fragmentation is controlled by the separation of the interface which in turn depends on the relative dimensions of the core and the block. The most important parameter is the ratio between the length of the pulse (space-wise or time-wise) and the characteristic dimensions of the models, i.e. in this case the dimensions of the core and the mantel. Stress wave superposition effects occur in the corner sections of the mantel. Theoretical results are in good agreement with recent experimental findings.  相似文献   
65.
A model for the stress‐dependent elastic wave velocity response of fractured rock mass is proposed based on experimental evidence of stress‐dependent fracture normal and shear stiffness. Previously proposed models and previous experimental studies on stress‐dependent fracture stiffness have been reviewed to provide a basis for the new model. Most of the existing stress‐dependent elastic wave velocity models are empirical, with model parameters that do not have clear physical meanings. To propose the new model, the rock mass is assumed to have randomly oriented microscopic fractures. In addition, the characteristic length of microfractures is assumed to be sufficiently short compared to the rock mass dimensions. The macroscopic stress‐dependent elastic wave velocity response is assumed to be attributed to the stress dependency of fracture stiffness. The stress‐dependent fracture normal stiffness is defined as a generalized power law function of effective normal stress, which is a modification of the Goodman's model. On the other hand, the stress dependency of fracture shear stiffness is modeled as a linear function of normal stress based on experimental data. Ultrasonic wave velocity responses of a dry core sample of Berea sandstone were tested at effective stresses ranging from 2 to 55 MPa. Visual observation of thin sections obtained from the Berea sandstone confirms that the assumptions made for microstructure of rock mass model are appropriate. It is shown that the model can describe the stress‐dependent ultrasonic wave velocity responses of dry Berea sandstone with a set of reasonable material parameter values. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   
66.
An approach is developed to simulate wave–wave interactions using nonlinear elliptic mild-slope equation in domains where wave reflection, refraction, diffraction and breaking effects must also be considered. This involves the construction of an efficient solution procedure including effective boundary treatment, modification of the nonlinear equation to resolve convergence issues, and validation of the overall approach. For solving the second-order boundary-value problem, the Alternating Direction Implicit (ADI) scheme is employed, and the use of approximate boundary conditions is supplemented, for improved accuracy, with internal wave generation method and dissipative sponge layers. The performance of the nonlinear model is investigated for a range of practical wave conditions involving reflection, diffraction and shoaling in the presence of nonlinear wave–wave interactions. In addition, the transformation of a wave spectrum due to nonlinear shoaling and breaking, and nonlinear resonance inside a rectangular harbor are simulated. Numerical calculations are compared with the results from other relevant nonlinear models and experimental data available in literature. Results show that the approach developed here performs reasonably well, and has thus improved the applicability of this class of wave transformation models.  相似文献   
67.
The wave groups are studied by both conventional wave analysis methods and by the non-stationary Hilbert Huang Transform (HHT) method. Full-scale wave records containing abnormal waves are used. Instantaneous quantities, such as envelope, phase and frequency, are adopted to study the wave grouping. A refined definition of wave group is proposed considering that the wave process is simultaneously amplitude and frequency modulated. The validation of the proposed definition is conducted by analysis of numerical simulation data. Group parameters are proposed based on the time-frequency distribution of energy. An attempt is made to find the relationship between the characteristics of abnormal waves and the group characteristics.  相似文献   
68.
For subsea pipeline projects, the costs related to seabed correction and free span intervention are often considerable. Development of reliable methods for fatigue analyses of pipelines in free spans contributes to minimize costs without compromising pipeline integrity. Assessment of wave-induced fatigue damage on multi-span pipelines is investigated, and improved analysis methods are suggested in this paper. A time-domain (TD) algorithm is developed, which accounts for non-linear hydrodynamic loading and dynamic interaction between adjacent spans. The proposed TD approach is employed to evaluate linearized frequency-domain (FD) solutions from recognized design standards and to study the dynamic response of multi-span pipelines to direct wave loading. Differences between multi- and single-span analyses are described for the first time, and the common assumption that the main fatigue damage contribution comes from the fundamental mode is demonstrated not to hold for multi-spans. An improved FD solution capable of predicting multi-mode response is derived and demonstrated to give accurate fatigue life estimates for multi-span pipelines.  相似文献   
69.
Accurately estimating the mean and extreme wave statistics and better understanding their directional and seasonal variations are of great importance in the planning and designing of ocean and coastal engineering works. Due to the lack of long-term wave measurement data, the analysis of extreme waves is often based on the numerical wave hind-casting results. In this study, the wave climate in the East China Seas (including the Bohai Sea, the Yellow Sea and the East China Sea) for the past 35 years (1979–2013) is hind-casted using a third generation wave model – WAMC4 (Cycle 4 version of WAM model). Two sets of reanalysis wind data from NCEP (National Centers for Environmental Prediction, USA) and ECMWF (European Centre for Medium-range Weather Forecasts) are used to drive the wave model to generate the long-term wave climate. The hind-casted waves are then analysed to study the mean and extreme wave statistics in the study area. The results show that the mean wave heights decrease from south to north and from sea to land in general. The extreme wave heights with return periods of 50 and 100 years in the summer and autumn seasons are significantly higher than those in the other two seasons, mainly due to the effect of typhoon events. The mean wave heights in the winter season have the highest values, mainly due to the effect of winter monsoon winds. The comparison of extreme wave statistics from both wind fields with the field measurements at several nearshore wave observation stations shows that the extreme waves generated by the ECMWF winds are better than those generated by the NCEP winds. The comparison also shows the extreme waves in deep waters are better reproduced than those in shallow waters, which is partly attributed to the limitations of the wave model used. The results presented in this paper provide useful insight into the wave climate in the area of the East China Seas, as well as the effect of wind data resolution on the simulation of long-term waves.  相似文献   
70.
An array of large concentric porous cylinder arrays is mounted in shallow water exposed to cnoidal waves. The interactions between waves and cylinders are studied theoretically using an eigenfunction expansion approach. Semi-analytical solutions of hydrodynamic loads and wave run-up on each cylinder are obtained using first approximation to cnoidal waves. The square array configuration of four-legged identical concentric porous cylinder is investigated in present study. Numerical results reveal the variation of dimensionless wave force and wave run-up on individual cylinder with angle of incidence, porosity parameter, spacing between outer and inner cylinders, spacing between concentric porous cylinders and wave parameter. Different mechanism of wave force is found under different range of scattering parameter.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号