首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Long term wave climate of both extreme wave and operational wave height is essential for planning and designing coastal structures. Since the field wave data for the waters around Korean peninsula is not enough to provide reliable wave statistics, the wave climate information has been generated by means of long-term wave hindcasting using available meteorological data. Basic data base of hindcasted wave parameters such as significant wave height, peak period and direction has been established continuously for the period of 25 years starting from 1979 and for major 106 typhoons for the past 53 years since 1951 for each grid point of the North East Asia Regional Seas with grid size of 18 km. Wind field reanalyzed by European Center for Midrange Weather Forecasts (ECMWF) was used for the simulation of waves for the extratropical storms, while wind field calculated by typhoon wind model with typhoon parameters carefully analyzed using most of the available data was used for the simulation of typhoon waves. Design wave heights for the return period of 10, 20, 30, 50 and 100 years for 16 directions at each grid point have been estimated by means of extreme wave analysis using the wave simulation data. As in conventional methodsi of design criteria estimation, it is assumed that the climate is stationary and the statistics and extreme analysis using the long-term hindcasting data are used in the statistical prediction for the future. The method of extreme statistical analysis in handling the extreme events like typhoon Maemi in 2003 was evaluated for more stable results of design wave height estimation for the return periods of 30–50 years for the cost effective construction of coastal structures.  相似文献   

2.
This paper evaluates the impact of using different wind field products on the performance of the third generation wave model SWAN in the Black Sea and its capability for predicting both normal and extreme wave conditions during 1996. Wind data were obtained from NCEP CFSR, NASA MERRA, JRA-25, ECMWF Operational, ECMWF ERA40, and ECMWF ERA-Interim. Wave data were obtained in 1996 at three locations in the Black Sea within the NATO TU-WAVES project. The quality of wind fields was assessed by comparing them with satellite data. These wind data were used as forcing fields for the generation of wind waves. Time series of predicted significant wave height (Hmo), mean wave period (Tm02), and mean wave direction (DIR) were compared with observations at three offshore buoys in the Black Sea and its performance was quantified in terms of statistical parameters. In addition, wave model performance in terms of significant wave height was also assessed by comparing them against satellite data.The main scope of this work is the impact of the different available wind field products on the wave hindcast performance. In addition, the sensitivity of wave model forecasts due to variations in spatial and temporal resolutions of the wind field products was investigated. Finally, the impact of using various wind field products on predicting extreme wave events was analyzed by focussing on storm peaks and on an individual storm event in October 1996. The numerical results revealed that the CFSR winds are more suitable in comparison with the others for modelling both normal and extreme events in the Black Sea. The results also show that wave model output is critically sensitive to the choice of the wind field product, such that the quality of the wind fields is reflected in the quality of the wave predictions. A finer wind spatial resolution leads to an improvement of the wave model predictions, while a finer temporal resolution in the wind fields generally does not significantly improve agreement between observed and simulated wave data.  相似文献   

3.
Typhoon-generated waves are simulated with two numerical wave models, the SWAN model for the coastal and Yangtze Estuary domain, nested within the WAVEWATCHIII (WW3) for the basin-scale East China Sea domain. Typhoon No. 8114 is chosen because it was very strong, and generated high waves in the Estuary. WW3 was implemented for the East China Sea coarse-resolution computational domain, to simulate the waves over a large spatial scale and provide boundary conditions for SWAN model simulations, implemented on a fine-resolution nested domain for the Yangtze Estuary area. The Takahashi wind model is applied to the simulation of the East China Sea scale (3-hourly) and Yangtze Estuary scale (1-hourly) winds. Simulations of significant wave heights in the East China Sea show that the highest waves are on the right side of the storm track, and maxima tend to occur at the eastern deep-water open boundary of the Yangtze Estuary. In the Yangtze Estuary, incoming swell is dominant over locally generated waves before the typhoon approaches the Estuary. As the typhoon approaches the Estuary, wind waves and swell coexist, and the wave direction is mainly influenced by the swell direction and the complex topography.  相似文献   

4.
Regional projection of future extreme wave heights around Korean Peninsula   总被引:1,自引:0,他引:1  
In this study, future changes in regional extreme wave heights around the Korean Peninsula are projected by using the results of an atmosphere general circulation model and a third-generation wave model. The direct use of the model output at each grid point is not appropriate even though high resolution of 20 km is used for the models. Therefore, the model output is grouped into six regions around the Korean Peninsula. The grouping approach is reasonable in assessing climate change effects with alleviated model uncertainty. The extreme wave heights are simulated for two climate periods of 1979–2003 (present climate) and 2075–2099 (future climate). The model results are validated by comparing the simulated wave heights for the present climate with observed and hindcasted wave data. The extreme wave heights for the future climate are then projected for different seasons and in different regions. The 50-year return wave height in summer is projected to increase in most regions, especially in the high-latitude Yellow Sea and the East Sea, while the wave height in winter is projected to decrease in all the regions, especially in the East Sea.  相似文献   

5.
Anisotropy of wind and wave regimes in the Baltic proper   总被引:1,自引:0,他引:1  
The directional distribution of moderate and strong winds in the Baltic Sea region is shown to be strongly anisotropic. The dominating wind direction is south-west and a secondary peak corresponds to north winds. North-west storms are relatively infrequent and north-east storms are extremely rare. Angular distribution of extreme wind speed also has a two-peaked shape with maxima corresponding to south-west and north winds, and a deep minimum for easterly winds. The primary properties of the anisotropy such as prevailing winds, frequency of their occurrence, directional distribution of mean and maximum wind speeds coincide on both sides of the Baltic proper. The specific wind regime penetrates neither into the mainland nor into the Gulf of Finland or the Gulf of Riga.Properties of the saturated wave field in the neighbourhood of proposed sites of the Saaremaa (Ösel) deep harbour are analysed on the basis of the wave model WAM forced by steady winds. The directional distribution of wave heights in typical and extreme storms is highly anisotropic. Remarkable wave height anomalies may occur in the neighbourhood of the harbour sites.  相似文献   

6.
1988-2002年黄海和渤海风浪后报   总被引:2,自引:1,他引:1  
本文对黄海和渤海风浪开展长期后报实验,时间范围覆盖1988至2002年,并分析相应的区域波候特征。首先,模式输出的月平均有效波高和卫星数据比对一致。其次,我们讨论了气候态月平均有效波高和平均波周期的时空分布特征。有效波高和平均波周期的气候态空间分布都呈现出西北-东南、或由近岸向深水区增加的趋势,这种空间的分布特征和局地的风强迫和水深密切相关。同时,海浪参数的季节变化也较显著。进一步,我们统计分析了风场和有效波高的极值,给出并揭示了黄海和渤海多年一遇有效波高的空间结构,并讨论了有效波高极值和风强迫极值之间的联系。  相似文献   

7.
1988—2009年中国海波候、风候统计分析   总被引:3,自引:0,他引:3  
利用高精度、高时空分辨率、长时间序列的CCMP(Cross-Calibrated,Multi-Platform)风场,驱动国际先进的第三代海浪模式WAVEWATCH-Ⅲ(WW3),得到中国海1988年1月~2009年12月的海浪场。对中国海的波候(风候)进行精细化的统计分析,分析了海表风场和浪场的季节特征、极值风速与极值波高、风力等级频率和浪级频率、海表风速和波高的逐年变化趋势,结果显示:(1)中国海的海浪场与海表风场具有较好的一致性,尤其是在DJF(December,January,February)期间;海表风速和波高在MAM(March,April,May)期间为全年最低,在DJF期间达到全年最大;MAM和JJA(June,July,August)期间,中国海大部分海域的波周期在3~5.5s,SON(September,October,November)和DJF期间为4.5~6.5s。(2)中国海极值风速、极值波高的大值区分布于渤海中部海域、琉球群岛附近海域和台湾以东广阔洋面、台湾海峡、东沙群岛附近海域、北部湾海域、中沙群岛南部海域。(3)吕宋海峡在MAM、SON、DJF期间均为6级以上大风和4m以上大浪的相对高频海域,JJA期间,6级以上大风的高频海域位于中国南半岛东南部海域,4m以上大浪主要出现在10°N以北。(4)在近22a期间,中国海大部分海域的海表风速、有效波高呈显著性逐年线性递增趋势,风速递增趋势约0.06~0.15m.s-1.a-1,波高递增趋势约0.005~0.03m.a-1。  相似文献   

8.
In coastal areas, offshore wave propagation towards the shore is influenced by water depth variations, due to sea bed bathymetry, tides and surges. Considering implications of climate change both on atmospheric forcing and sea level rise, a simple methodology involving numerical modelling is implemented to compute inshore waves from 1960 to 2099. Simulations take into account five scenarios of linear sea level rise and one climatic scenario for storm surges and offshore waves. The methodology is applied to the East Anglia coast (UK). Extreme event analysis is performed to estimate climate change implication on inshore waves and the occurrence of extreme events. It is shown, for this coastal region, that wave statistics are sensitive to the trend in sea level rise, and that the climate change scenario leads to a significant increase of extreme wave heights in the northern part of the domain. For nearshore points, the increase of the mean sea level alters not only extreme wave heights but also the frequency of occurrence of extreme wave conditions.  相似文献   

9.
Numerical experiments were carried out using OGCM (Ocean General Circulation Model), MOM2.2 (Modular Ocean Model Ver. 2.2), over realistic topography data, ETOPO5 (Earth Topography - 5 Minute), to investigate the interannual variability of the Kuroshio transport in 1960–2000 south of Japan; 1) the PN line located off the East China Sea, and 2) the ASUKA (Affiliated Surveys of the Kuroshio off Cape Ashizuri) line located off Cape Ashizuri. We adopted two wind datasets as driving forces of the OGCM: 1) the NCEP/NCAR (National Centers for Environmental Prediction/National Center for Atmospheric Research) reanalysis monthly mean wind stress data, and 2) the ECMWF (European Centre for Medium-range Weather Forecasts) daily wind data. In the ECMWF experiments we replaced the NCEP/NCAR data only in 1979–1993 because of the availability of the data. The OGCMs and observation basically agree on the temporal variation patterns of the transports until 1986 on the PN line with correlation coefficients of about 0.6. During the 1990s, when data were collected on the ASUKA line, the NCEP/NCAR experiments give lower correlation coefficients (less than 0.3), on both PN and ASUKA lines, while the ECMWF experiments have a higher value on the ASUKA line (0.5). One of the reasons for the disagreement between the observations and OGCMs during the 1990s might arise from the NCEP/NCAR data. An additional analysis of a wind-driven circulation was performed to examine the sensitivity of integrated Sverdrup transport along the western boundary to the propagation speed of a baroclinic Rossby wave, which is varied by stratification. A variation of the stratification, which might be induced by variability of air-sea heat and freshwater fluxes, cannot be a main cause of the disagreement. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
李江夏  朱钰  徐杰  姚宇 《海洋通报》2023,(3):260-271
全球再分析海面风资料在波浪模拟和风能资源评估等研究中发挥着重要作用,但风场资料种类繁多,且准确性在不同海域差异较大,使用时需要进行适用性分析。本文基于欧洲中期天气预报中心的ERA5和ERA-Interim再分析风场,利用多个站点的实测数据,分析了其在中国近海的适用性,并将再分析风场输入FVCOM-SWAVE波浪模型,对比了它们在常风天和台风天对波浪模拟的效果。结果表明:(1)常风天条件下ERA5和ERA-Interim资料在中国近海表现相似,风速较实测值略偏大,均能基本反映海表面风场变化和平均风速分布,吻合度指标在各站点均超过0.9;(2) ERA5对台风的模拟显著优于ERA-Interim,能较好模拟台风风速结构,对不同台风模拟精度差异大,整体上会低估台风风速;(3)风场质量是造成波浪模拟误差的主要原因之一,ERA5和ERA-Interim均能较好地模拟常海况下的波浪变化情况,而在台风浪的模拟中ERA5更优,“双台风”现象对风速和波浪的模拟准确度影响大。  相似文献   

11.
Upper Ocean Sensitivity to Wind Forcing in the South China Sea   总被引:2,自引:0,他引:2  
The Naval Research Laboratory (NRL) Layered Ocean Model (NLOM) has been used to investigate the sensitivity of the upper South China Sea (SCS) circulation to various atmospheric wind forcing products. A 1/16° 6-layer, thermodynamic Pacific Ocean north of 20°S version of NLOM has been integrated using observed climatological monthly mean winds (Hellerman and Rosenstein, 1983) and climatologies based on two atmospheric prediction models: the European Centre for Medium-Range Weather Forecasts (ECMWF) and the National Centers for Environmental Prediction (NCEP). ECMWF products include the 10 meter winds (at both 1.125° and 2.5° resolution) and surface stresses (1.125°). The NCEP forcing (1.875°) is a surface stress product. Significant differences exist in the wind stress curl patterns and this is reflected in the upper ocean model response, which is compared to observational data. The model experiments suggest the generation of the West Luzon Eddy is controlled by positive wind stress curl. The degree of Kuroshio intrusion into the SCS, however, is not affected by wind stress curl but is governed by the coastline geometry of the island chain within Luzon Strait. The summertime offshore flow from the Vietnamese coast is present in all simulations but the dipole structure on either side of the jet is variable, even among experiments with similar wind stress curl patterns. The ECMWF surface stresses exhibit spurious coastal wind stress curl patterns, especially in locations with significant orographic features. This manifests itself in unrealistic small scale coastal gyres in NLOM. High resolution basin-scale and coastal models might be adversely affected by these stresses. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
为了研究欧洲北海海域的波高全区域概率分布情况,从而为海洋平台等海洋浮式结构物的选址和结构设计提供依据。首先基于Global Waves Statistics(GWS)提供的实测数据,确定典型计算工况的发生概率;同时考虑实测数据中极端波浪环境下的数据缺失导致大波高分布概率偏小的问题,利用三参数Weibull分布确定不同重现期下的极值风速,作为典型计算工况的补充。以不同风速、风向的定常风场为输入项,利用第三代海浪数值模型SWAN模型,对北海全区域波高进行数值模拟。将数值模拟的稳态形式依照各工况的发生概率进行归一化累加处理,认为其结果可以表征全区域的波高概率分布情况。以波高概率分布的计算结果为依据,分析北海海域波浪环境的统计学特征,发现有效波高为7 m以上的大波高频发区在北海北部区域有大范围分布;有效波高4~5 m为北海东北区域的多发海况,极端海况下的有效波高主要分布于7~14 m区间,在地形突变区域的波高发生显著变化。  相似文献   

13.
利用WAVEWATCHⅢ海浪模式模拟的1993-2011年中国东部海域19 a冬季逐日海浪场资料以及同期CCMP逐日风场资料,采用奇异值分解(SVD)的方法分析了冬季中国东部海域海浪场与提前0~5 d的东亚大陆地面风场的关联特征。结果发现:海浪场与提前1 d的地面风场的关联更有意义;SVD第一模态和第二模态分别反映了贝加尔湖以东南下的反气旋式偏北扰动大风(或气旋式偏南扰动大风)和中国东部平原入海的气旋式扰动风场(或反气旋式扰动风场)对中国东部海域海浪的扰动影响。此外,SVD分析还揭示了冬季影响中国东部海域海浪的大风关键区和移动路径;随着时间的推移,大风关键区从贝加尔湖以东逐步由蒙古南下影响中国东北和华北地区,最后到达中国东部海域。  相似文献   

14.
The accurate surface wind in the equatorial Indian Ocean is crucial for modeling ocean circulation over this region. In this study, the surface wind analysis generated at the European Center for Medium Range Weather Forecasts (ECMWF) and the National Centers for Environmental Prediction (NCEP) are compared with NASA QuikSCAT satellite derived Level2B (swath level) and Level3 (gridded) surface winds for the year 2005. It is observed that the ECMWF winds exhibit speed bias of 1.5 m/s with respect to QuikSCAT Level3 in the southern equatorial Indian Ocean. The NCEP winds are found to exhibit speed bias (1.0–1.5 m/s) in the southern equatorial Indian Ocean specifically during January–February 2005. The biases are also observed in the analysis when compared with Level2B product as well; however, it is less in comparison to Level3 products. The amplitude of daily variations of both ECMWF and NCEP wind speed in Bay of Bengal and parts of the Arabian Sea is about 80% of that in QuikSCAT, while in the equatorial Indian Ocean it is about 60% of that of QuikSCAT.  相似文献   

15.
This study investigates the long-term changes of monthly sea surface wind speeds over the China seas from 1988 to 2015. The 10-meter wind speeds products from four major global reanalysis datasets with high resolution are used: Cross-Calibrated Multi-Platform data set(CCMP), NCEP climate forecast system reanalysis data set(CFSR),ERA-interim reanalysis data set(ERA-int) and Japanese 55-year reanalysis data set(JRA55). The monthly sea surface wind speeds of four major reanalysis data sets have been investigated through comparisons with the longterm and homogeneous observation wind speeds data recorded at ten stations. The results reveal that(1) the wind speeds bias of CCMP, CFSR, ERA-int and JRA55 are 0.91 m/s, 1.22 m/s, 0.62 m/s and 0.22 m/s, respectively.The wind speeds RMSE of CCMP, CFSR, ERA-int and JRA55 are 1.38 m/s, 1.59 m/s, 1.01 m/s and 0.96 m/s,respectively;(2) JRA55 and ERA-int provides a realistic representation of monthly wind speeds, while CCMP and CFSR tend to overestimate observed wind speeds. And all the four data sets tend to underestimate observed wind speeds in Bohai Sea and Yellow Sea;(3) Comparing the annual wind speeds trends between observation and the four data sets at ten stations for 1988-1997, 1988–2007 and 1988–2015, the result show that ERA-int is superior to represent homogeneity monthly wind speeds over the China seaes.  相似文献   

16.
为了分析台风影响下浙江沿海风和浪的演变特点,利用浙江省海洋浮标站监测数据和欧洲中期天气预报中心第五代全球气候大气再分析数据(European Centre for Medium-Range Weather Forecasts Reanalysis v5,ERA5),选取2010年以来严重影响浙江的7次台风个例,对台风作用下浙江沿海海面风和浪的演变特点进行分析。结果表明:在台风影响过程中,海浪波型多数呈现混合浪-风浪-混合浪的演变规律;涌浪波型的出现与台风强度及其与浮标站的距离和方位有关,也与海洋潮汐现象紧密相关。台风影响期间,浙江沿海浪高的变化受风速和风向共同作用影响。在风向不变的情况下,持续风速增大对浪高的增大有明显作用;风向的变化也会对浪高变化产生影响,向岸风和离岸风的转变会造成浪高出现剧烈变化。ERA5 再分析资料有效波高在台风浪较大时会呈现偏小的趋势,分析订正后的ERA5 有效波高发现,台风浪有效波高大值区与台风中心位置相关。研究结果可为严重影响浙江沿海的台风浪预报服务提供参考。  相似文献   

17.
采用TOMAWAC模型模拟近岸40年的波浪要素。波谱计算采用36个方向,模拟波周期范围为1.5~29 s,并对极值波况进行分析。统计了1979—2018年间有效波高的年极值,算得百年一遇的有效波高,发现百年一遇波高由北往南总体呈现增大趋势:渤海和黄海的百年一遇的波高不超过10 m;东海百年一遇的波高在15~22 m之间;南海北部百年一遇波高的范围比较大,靠近台湾部分最大达到了22 m,海南岛西部较小,在10~15 m之间。引用SET值相关指标对极端波浪的发生次数、持续时间和强度进行分析,发现渤海、黄海北部、台湾海峡以及南海西北部极端事件频繁发生,平均每年有5~7次,台湾岛西南部极端事件的平均历时最大,达到了32 h。  相似文献   

18.
New satellite-derived latent and sensible heat fluxes are performed by using Wind Sat wind speed, Wind Sat sea surface temperature, the European Centre for Medium-range Weather Forecasting(ECMWF) air humidity, and ECMWF air temperature from 2004 to 2014. The 55 moored buoys are used to validate them by using the 30 min and 25 km collocation window. Furthermore, the objectively analyzed air-sea heat fluxes(OAFlux) products and the National Centers for Environmental Prediction-National Center for Atmospheric Research reanalysis 2(NCEP2) products are also used for global comparisons. The mean biases of sensible and latent heat fluxes between Wind Sat flux results and buoy flux data are –0.39 and –8.09 W/m~2, respectively. In addition, the rootmean-square(RMS) errors of the sensible and latent heat fluxes between them are 5.53 and 24.69 W/m~2,respectively. The RMS errors of sensible and latent heat fluxes are observed to gradually increase with an increasing buoy wind speed. The difference shows different characteristics with an increasing sea surface temperature, air humidity, and air temperature. The zonal average latent fluxes have some high regions which are mainly located in the trade wind zones where strong winds carry dry air in January, and the maximum value centers are found in the eastern waters of Japan and on the US east coast. Overall, the seasonal variability is pronounced in the Indian Ocean, the Pacific Ocean, and the Atlantic Ocean. The three sensible and latent heat fluxes have similar latitudinal dependencies; however, some differences are found in some local regions.  相似文献   

19.
The paper compares the wave hindcast in the Western Mediterranean sea using the reanalysis wind fields from HIPOCAS and ERA-40 from ECMWF for November 2001. The study has concentrated on the Mediterranean coast of Spain where there are known difficulties with the wind and wave modelling. Two winter storms have been compared. The main differences between the significant wave heights using the ERA-40 reanalysis (ECMWF) and HIPOCAS reanalysis winds were observed to increase when moving southwards in the geographical domain at the offshore locations. Systematic negative biases of Hs were obtained with the ERA-40 data at all the coastal locations analyzed, whereas positive biases are typical for the HIPOCAS reanalysis. For offshore and coastal locations when using the ERA-40 data the Hs biases increased moving to South, while this pattern was not so clear for the HIPOCAS data. The inconsistencies in the comparisons of modelled waves against measurements seem to be associated with the quality of the wind fields.  相似文献   

20.
根据1983-1989年南麂海洋站在台风影响过程中的实测风和浪资料,分析了该海域的波浪特征。结果表明,这个海域的台风波浪通常是混合浪,在台风影响过程中出现的最大值波高,既有较大波陡的风浪,也有波陡较小的清浪;各向波高的均值变化不大,各向最大波高却有较大幅度的差距;本区的台风浪以4级波高占优,风浪以NNE向、涌浪以E向为常浪向;波高为4级的风浪和涌浪,其周期分别在4.0-4.9S和7.0-7.9S之  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号