首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   233篇
  免费   30篇
  国内免费   11篇
测绘学   29篇
大气科学   1篇
地球物理   43篇
地质学   26篇
海洋学   149篇
综合类   9篇
自然地理   17篇
  2023年   3篇
  2022年   2篇
  2021年   4篇
  2020年   13篇
  2019年   16篇
  2018年   12篇
  2017年   13篇
  2016年   12篇
  2015年   5篇
  2014年   10篇
  2013年   26篇
  2012年   5篇
  2011年   9篇
  2010年   5篇
  2009年   9篇
  2008年   10篇
  2007年   10篇
  2006年   13篇
  2005年   9篇
  2004年   7篇
  2003年   13篇
  2002年   12篇
  2001年   2篇
  2000年   6篇
  1999年   3篇
  1998年   3篇
  1997年   8篇
  1996年   12篇
  1995年   2篇
  1994年   2篇
  1993年   6篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   3篇
  1986年   2篇
  1985年   1篇
  1982年   1篇
排序方式: 共有274条查询结果,搜索用时 218 毫秒
31.
In Arctic alpine regions, glacio‐lacustrine environments respond sensitively to variations in climate conditions, impacting, for example,glacier extent and rendering former ice‐contact lakes into ice distal lakes and vice versa. Lakefloors may hold morphological records of past glacier extent, but remoteness and long periods of ice cover on such lakes make acquisition of high‐resolution bathymetric datasets challenging. Lake Tarfala and Kebnepakte Glacier, located in the Kebnekaise mountains, northern Sweden, comprise a small, dynamic glacio‐lacustrine system holding a climate archive that is not well studied. Using an autonomous surface vessel, a high‐resolution bathymetric dataset for Lake Tarfala was acquired in 2016, from which previously undiscovered end moraines and a potential grounding line feature were identified. For Kebnepakte Glacier, structure‐from‐motion photogrammetry was used to reconstruct its shape from photographs taken in 1910 and 1945. Combining these methods connects the glacial landform record identified at the lakefloor with the centennial‐scale dynamic behaviour of Kebnepakte Glacier. During its maximum 20th century extent, attained c. 1910, Kebnepakte Glacier reached far into Lake Tarfala, but had retreated onto land by 1945, at an average of 7.9 m year–1. Copyright © 2019 John Wiley & Sons, Ltd.  相似文献   
32.
在全球变化背景下,湖泊水文的动态变化不仅是评估和预测气候与环境变化的重要指示剂,同时对社会可持续发展、水资源的开发与利用、生态文明建设等产生重要影响。湖泊水文的动态变化受到湖滨及湖底地形的控制,数字高程模型(DEM)成为湖泊水文研究的重要数据源。随着遥测技术的发展,高分辨率、区域/全球大尺度DEM数据的获取手段快速发展、数据源不断丰富,DEM对推动湖泊水文动态研究进展起到了关键作用。本文首先基于Web of Science平台对DEM在湖泊水文动态研究中的相关文献进行了分析,阐述了该主题现有研究在发文时间、发文数量增减态势、研究区域与热点地区、文献所涉及的DEM数据等方面的特点。接着,围绕着DEM在湖泊水文动态的研究中4个主要方向:湖泊水域变化、湖泊水位变化、湖泊水量变化、湖泊水文灾害情势,重点总结:DEM与其他遥感观测平台、实地观测及模型模拟等多源数据的融合策略,数字地形分析与水文学分析、遥感影像分析等方法的集成策略,以及DEM数据不确定性等对湖泊水文变化研究的影响。最后,本文论述了目前DEM在湖泊水文研究中存在的关键问题,并结合技术发展趋势和研究热点问题,提出了可能的解决路径和未来的研究前景。  相似文献   
33.
GPS动态实时差分定位模式具有精度高,性能可靠,使用方便等优点,它在许多领域都展示了广阔的应用前景,本文将以DGPS在航道的水下地形与不深测量方面的具体应用为例予以简单介绍,代与同行交流。  相似文献   
34.
卫星测高技术应用研究回顾与展望   总被引:2,自引:1,他引:1  
简要介绍了笔者所在单位近十年来密切跟踪世界发展动态,灵活运用高新技术,致力于卫星测高技术应用研究所取得的一些有理论意义和实用价值的成果,这些成果主要包括四个方面:卫星测高径向轨道误差时域和空域特征分析、卫星测高反演海洋重力场、卫星测高反演海底地形以及利用测高重力异常扩展超高阶地球位模型研究成果。最后对这一研究领域未来的发展方向作了展望。  相似文献   
35.
The recent development of structure‐from‐motion (SfM) and multi‐view stereo (MVS) photogrammetry techniques has enabled semi‐automatic high‐resolution bathymetry using aerial images taken by consumer‐grade digital cameras mounted on unmanned aerial vehicles (UAVs). However, the applicability of these techniques is sometimes limited by sun and sky reflections at the water surface, which render the point‐cloud density and accuracy insufficient. In this research, we present a new imaging technique to suppress the effect of these water‐surface reflections. In this technique, we order a drone to take a short video instead of a still picture at each waypoint. We then apply a temporal minimum filter to the video. This filter extracts the smallest RGB values in all the video frames for each pixel, and composes an image with greatly reduced reflection effects. To assess the performance of this technique, we applied it at three small shallow‐water sites. Specifically, we evaluated the effect of the technique on the point cloud density and the accuracy and precision of the photogrammetry. The results showed that the proposed technique achieved a far denser point cloud than the case in which a randomly chosen frame was used for each waypoint, and also showed better overall accuracy and precision in estimating water‐bottom elevation. The effectiveness of this new technique should depend on the surface wave state and sky radiance distribution, and this dependence, as well as the applicability to large areas, should be investigated in future research. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   
36.
River engineering projects are developing rapidly across the globe, drastically modifying water courses and sediment transfer. Investigation of the impact of engineering works focuses usually on short-term impacts, thus a longer-term perspective is still missing on the effects that such projects have. The ‘Jura Water Corrections’ – the largest river engineering project ever undertaken in Switzerland – radically modified the hydrological system of Lake Biel in the 19th and 20th Century. The deviation of the Aare River into Lake Biel more than 140 years ago, in 1878, thus represents an ideal case study to investigate the long-term sedimentological impacts of such large-scale river rerouting. Sediment cores, along with new high-resolution bathymetric and seismic reflection datasets were acquired in Lake Biel to document the consequences of the Jura Water Corrections on the sedimentation history of Lake Biel. Numerous subaquatic mass transport structures were detected on all of the slopes of the lake. Notably, a relatively large mass transport complex (0·86 km2) was observed on the eastern shore, along the path of the Aare River intrusion. The large amount of sediment delivered by the Aare River since its deviation into the lake likely caused sediment overloading resulting in subaquatic mass transport. Alternatively, the dumping since 1963 in a subaquatic landfill of material excavated during the second phase of river engineering, when the channels flowing into and out of Lake Biel were widened and deepened, might have triggered the largest mass transport, dated to 1964 or 1965. Additional potential triggers include two nearby small earthquakes in 1964 and 1965 (MW 3·9 and 3·2, respectively). The data for this study indicate that relatively large mass transports have become recurrent in Lake Biel following the deviation of the Aare River, thus modifying hazard frequency for the neighbouring communities and infrastructure.  相似文献   
37.
High-resolution multibeam bathymetric data and acoustic sub-bottom profiles were recently collected in Grand Lake (Labrador), one of the deepest lake basins in eastern North America, to reconstruct: (1) the retreat of the Laurentide Ice Sheet (LIS) west of Lake Melville and (2) the history of sedimentation since deglaciation in this 54 km-long, 3 km-wide fjord-lake. Our results provide a morphostratigraphical framework that brings new insights to the style and pattern of retreat of the LIS in the region, as well as deglacial and postglacial sedimentary dynamics. Terrestrial glacial lineations observed on a digital elevation model (DEM) provide evidence of a previously undocumented ice stream in the Grand Lake area. This newly mapped ice stream suggests that the calving bay formed in Lake Melville triggered a reorganization of the regional drainage pattern of the LIS. The sedimentary infill of Grand Lake consists of a sequence of deglacial to postglacial sediments that contain deposits related to a series of mass movements. The 8.2 cal ka BP cold event is recorded in Grand Lake by a series of closely spaced moraines deposited at the outlet of the fjord-lake to form a morainic complex similar to the Cockburn morainic complex on Baffin Island. During deglaciation, a dense dendritic network of proglacial gullies incised into the steep sidewalls of the lake. Since deglaciation, paraglacial and postglacial sedimentation has led to the deposition of large prograding deltas at the fjord head, where density currents remain active today and have formed a series of sediment waves on the frontal slopes and a prodeltaic environment. © 2019 John Wiley & Sons, Ltd.  相似文献   
38.
The Spratly (Nansha) Islands in the South China Sea have considerable economic and important militarily strategic status. Ocean color remote sensing is an effective mean of surveying and research and especially it is useful for areas that are difficult to access, such as Thitu Island and its reef in the Spratly Islands. The Hyper-spectral Optimization Process Exemplar (HOPE) model, developed by Lee et al. (1999) is a rapid and robust bathymetry method that uses hyper-spectral remote sensing. In this study, using Hyperion hyper-spectral sensor data and HOPE, we derive bathymetry and bottom albedo measurements around Thitu Island and its reef. We compare the distribution of bottom depths from C-MAP with that derived from the Hyperion data. The retrieved bathymetry results correlate well with the distribution obtained from the bathymetry contour from 2.0 to 20 m. The average difference between Hyperion and C-MAP for two selected transects was 17.1% (n=59, R=0.848, RMSE=2.342) and 10.9% (n=59, R2=0.834, RMSE=0.463). The retrieved bottom albedo is homogeneous in the lagoon and significantly non-homogeneous around the lagoon. These results indicate that HOPE could be very useful for bathymetry studies for the islands of the South China Sea.  相似文献   
39.
This study developed and evaluated a hybrid approach to remote measurement of river morphology that combines LiDAR topography with spectrally based bathymetry. Comparison of filtered LiDAR point clouds with surveyed cross‐sections indicated that subtle features on low‐relief floodplains were accurately resolved by LiDAR but that submerged areas could not be detected due to strong absorption of near‐infrared laser pulses by water. The reduced number of returns made the active channel evident in a LiDAR point density map. A second dataset suggested that pulse intensity also could be used to discriminate land from water via a threshold‐based masking procedure. Fusion of LiDAR and optical data required accurate co‐registration of images to the LiDAR, and we developed an object‐oriented procedure for achieving this alignment. Information on flow depths was derived by correlating pixel values with field measurements of depth. Highly turbid conditions dictated a positive relation between green band radiance and flow depth and contributed to under‐prediction of pool depths. Water surface elevations extracted from the LiDAR along the water's edge were used to produce a continuous water surface that preserved along‐channel variations in slope. Subtracting local flow depths from this surface yielded estimates of the bed elevation that were then combined with LiDAR topography for exposed areas to create a composite representation of the riverine terrain. The accuracy of this terrain model was assessed via comparison with detailed field surveys. A map of elevation residuals showed that the greatest errors were associated with underestimation of pool depths and failure to capture cross‐stream differences in water surface elevation. Nevertheless, fusion of LiDAR and passive optical image data provided an efficient means of characterizing river morphology that would not have been possible if either dataset had been used in isolation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
40.
将测高重力异常、局部大地水准面和垂线偏差作为输入数据,计算海洋垂直重力梯度异常。以中西太平洋海域作为研究对象,对垂直重力梯度异常和海底地形的相关性进行分析,在20~200 km波段范围内利用梯度异常推估海底地形。结果表明,反演地形的相对精度在7.14%左右,在多海山地区精度较差。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号