首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   402篇
  免费   67篇
  国内免费   127篇
大气科学   3篇
地球物理   60篇
地质学   298篇
海洋学   150篇
天文学   2篇
综合类   11篇
自然地理   72篇
  2024年   2篇
  2023年   11篇
  2022年   32篇
  2021年   33篇
  2020年   16篇
  2019年   31篇
  2018年   20篇
  2017年   29篇
  2016年   15篇
  2015年   27篇
  2014年   32篇
  2013年   31篇
  2012年   29篇
  2011年   37篇
  2010年   23篇
  2009年   33篇
  2008年   24篇
  2007年   13篇
  2006年   31篇
  2005年   14篇
  2004年   16篇
  2003年   14篇
  2002年   7篇
  2001年   8篇
  2000年   14篇
  1999年   10篇
  1998年   8篇
  1997年   4篇
  1996年   3篇
  1995年   6篇
  1994年   2篇
  1993年   1篇
  1992年   4篇
  1991年   3篇
  1990年   1篇
  1986年   3篇
  1985年   4篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
排序方式: 共有596条查询结果,搜索用时 15 毫秒
81.
荒漠土壤微生物群落结构特征研究进展   总被引:3,自引:2,他引:1  
李婷  张威  刘光琇  陈拓 《中国沙漠》2018,38(2):329-338
荒漠生态系统占地球陆地面积三分之一,是地球化学循环中的重要部分。荒漠干旱高温、缺乏植被、UV辐射强,曾被认为是没有生命的地方。然而在这恶劣环境中却蕴含有大量的微生物资源,尤其是荒漠土壤富集了大量微生物。微生物参与和主导整个荒漠生态系统地球生物化学循环,对于调节重要生态过程、修复和稳定荒漠生态系统起到重要作用,对其的研究生态学意义突出。本文综述了国内外对荒漠土壤微生物群落结构特征、群落功能多样性以及微生物群落、微生物与植物、微生物与环境之间相互关系的研究现状,旨在充分了解荒漠土壤微生物多样性研究,总结对荒漠微生物生态认识的不足,为荒漠微生物生态研究方向提供参考。  相似文献   
82.
High salt and low temperature are the bottlenecks for the remove of oil contaminants by enriched crude-oil degrading microbiota in Liaohe Estuarine Wetland(LEW),China.To improve the performance of crude-oil removal,microbiota was further immobilized by two methods,i.e.,sodium alginate(SA),and polyvinyl alcohol and sodium alginate(PVA+SA).Results showed that the crude oil was effectively removed by the enrichment with an average degrading ratio of 19.42-31.45 mg(L d)?1.The optimal inoculum size for the n-alkanes removal was 10%and 99.89%.Some members of genera Acinetobacter,Actinophytocola,Aquabac-terium,Dysgonomonas,Frigidibacter,Sphingobium,Serpens,and Pseudomonas dominated in crude-oil degrading microflora.Though the removal efficiency was lower than free bacteria when the temperature was 15℃,SA and PVA+SA immobilization im-proved the resistance to salinity.The composite crude-oil degrading microbiota in this study demonstrated a perspective potential for crude oil removal from surface water under high salinity and low temperature conditions.  相似文献   
83.
Levels of bacterial indicators of pollution are related with marine salinity and turbidity at both high tide (HT) and low tide (LT). The salinity varied from values around 26.9 ppm at the LT and 28.6 ppm at the high tide but affected total and faecal coliform (FC) estimates. Salinity readings of 25–30 ppm produced microbial counts below 10−2 MPN/100 ml total coliforms (TCs) whereas salinity of 15–22 ppm produced a TC level of 4.6×10−4 MPN/100 ml. Turbidity peaks in the samples are accompanied by peaks of microbial contamination of the seawater indicating that the contamination is normally deposited at the marine sediment rather than in the water column. In fact, samples collected under heavy stormy weather, in which the water agitation resulted in turbidity values up to 68.3 NTU, produced maximum microbial counts.  相似文献   
84.
中国南极长城站室内空气微生物含量七年前后的比较   总被引:3,自引:0,他引:3  
中国南极长城站室内空气微生物含量的考察结果表明,七年后,虽然一些室内空气微生物含量有所下降,即空气质量有所改善,但总体来看,略是上升势。与友邻科考站相比,长城站的多少有点偏高。也比非南极的较高纬度的某些室内空气微生物含量高。结果意味着长城站尚有提高空气质量、改善环境状况的余地。  相似文献   
85.
The metabolic inhibitor cycloheximide was used to estimate the influence of primarily unicellular eukaryotes (heterotrophic protozoa) on nutrient recycling in different types of sediments in the North Sea. Fluxes of dissolved inorganic nitrogen across the sediment–water interface were measured in undisturbed sediment cores (controls) and compared to fluxes in sediment cores with cycloheximide added. If eukaryotes play an important role in nutrient recycling, one would expect to find lower nitrogen sediment–water effluxes in cores with cycloheximide due to the inactivation of eukaryotes. This important role hypothesised for eukaryotes was not generally observed: Only at four of the nineteen stations were ammonium effluxes significantly higher in controls than in cores with cycloheximide, and at five stations nitrate effluxes were significantly higher in the controls than in the cores with cycloheximide. Eukaryotic activity apparently contributed to the sediment–water exchange of ammonium through mineralisation of organic matter, nitrification and the subsequent release of ammonium and nitrate at these stations. At most other stations no differences were obtained between controls and cores with cycloheximide. This suggests that bacteria were the most important nutrient mineralisers at these stations at the time of the cruises.  相似文献   
86.
An avenue to integrate theoretical, experimental and field research methods to forecast water quality in water bodies for different scenarios of water management is proposed. Exploration of the laws of organization, stability and controllability of laboratory "ideal" water microbial communities (model ecosystems) is the basis to build the following biophysical research chain:to formalize with primary field information a conceptual block-diagram of a water ecosystem →to real chemical and other density-dependent and population-growth-controlling factors → to find our limiting factors for natural ecosystems → to conduct experiments with isolated chemical factors and hydrobionts to derive kinetic dependencies and quantitative parameters→ to transfer regularities of operation and kinetic dependencies to the natural ecosystem→ retrospective verification of the model on the base of available field and derived theoretical-experimental data →prognostic calculations for the scenario. Efficiency of the approach is demonstrated in microalgal "blooming" models for Krasnoyarsk and Kantat reservoirs and in prognostication of radioecological state of great Yenisei river:1) radionuclide distribution in the Yenisei''s bottom sediment is nonuniform-"spotty"; 2) it is theoretically shown, that due to biological interactions and tro-phical radioniclide migration there is "spotive" type of space radionuclide distribution. The research is to make use of the novel methods of ecological biophysics:Monitoring:spectral analysis of surface waters (algal pigments), fluorescent techniques to evaluate productivity and condition of algae; rapid bioassays for water toxicity (bioluminescence, chemotaxis techniques). Kinetic experiments:microcosms on evaluating self-purification rates; special cultivators to evaluate the rates of growth of hydrobionts and radioactive engulfing, nutrition spectra; methods of finding growth limiting factors. Models:application of Bellman Principle to optimizing the river water use; theory and peculiarities of microbiological decomposition of pollutants in the river ecosystem. The composition of Prognostication Simulation Model is the next:1) hydrodynamical unit to calculate 2-dimensional space-time rate of stream on any depth; 2) hydrophysical unit to calculate:water temperature and level of solar radiation inside the water body; 3) ecosystem unit to calculate dynamic of concentration of phytoplankton, zooplankton, bacteria, major chemical matters and pollutants in water, content pollutants inside of hydrobionfs cells and dynamic of bentos; 4) radioe-cological unit to forecast the dynamic of radionuclides in the water body and bottom, their hydro-bont''s concentration; 5) database. Reservoirs and river models are provided by monitoring and kinetic experiments data.  相似文献   
87.
Dissolved organic matter (DOM) is integral to fluvial biogeochemical functions, and wetlands are broadly recognized as substantial sources of aromatic DOM to fluvial networks. Yet how land use change alters biogeochemical connectivity of upland wetlands to streams remains unclear. We studied depressional geographically isolated wetlands on the Delmarva Peninsula (USA) that are seasonally connected to downstream perennial waters via temporary channels. Composition and quantity of DOM from 4 forested, 4 agricultural, and 4 restored wetlands were assessed. Twenty perennial streams with watersheds containing wetlands were also sampled for DOM during times when surface connections were present versus absent. Perennial watersheds had varying amounts of forested wetland (0.4–82%) and agricultural (1–89%) cover. DOM was analysed with ultraviolet–visible spectroscopy, fluorescence spectroscopy, dissolved organic carbon (DOC) concentration, and bioassays. Forested wetlands exported more DOM that was more aromatic‐rich compared with agricultural and restored wetlands. DOM from the latter two could not be distinguished suggesting limited recovery of restored wetlands; DOM from both was more protein‐like than forested wetland DOM. Perennial streams with the highest wetland watershed cover had the highest DOC levels during all seasons; however, in fall and winter when temporary streams connect forested wetlands to perennial channels, perennial DOC concentrations peaked, and composition was linked to forested wetlands. In summer, when temporary stream connections were dry, perennial DOC concentrations were the lowest and protein‐like DOM levels the highest. Overall, DOC levels in perennial streams were linked to total wetland land cover, but the timing of peak fluxes of DOM was driven by wetland connectivity to perennial streams. Bioassays showed that DOM linked to wetlands was less available for microbial use than protein‐like DOM linked to agricultural land use. Together, this evidence indicates that geographically isolated wetlands have a significant impact on downstream water quality and ecosystem function mediated by temporary stream surface connections.  相似文献   
88.
Long-term and seasonal geomorphological changes at Padre Island, Texas are identified and linked with potential external drivers. Aerial and satellite images from 1950 to 2018, monthly images from 2019 to 2020, and a 2018 LiDAR data set are used to assess long-term and seasonal geomorphological changes within a 50 km2 area of Padre Island near Port Mansfield, Texas. Trends in landcover are evaluated by mapping and comparing the relative areal coverage of each facies. Vegetated dunes, absent initially, emerged in the fore-island and expanded into the back-barrier to cover 14% of the study area. The active vegetation-free back-barrier dune field steadily decreased in areal extent from 12% to 6% as vegetation spread. Nebkha dune coverage fluctuated between 4% and 7%. Expansive microbial mats colonized the wind tidal and deflation flats surrounding the vegetated dunes and back-barrier dune field giving rise to a remarkably different landscape over the 50-year period studied. An assessment of external forcing factors identifies increased rates of relative sea level rise and decreased sediment influx as the most likely primary factors driving the geomorphological changes. These changes have induced a widespread shift toward stabilization of island sediments by vegetation and microbial mats, which in turn has starved the back-barrier of sediments resulting in low rates of accretion and increased flooding. These findings highlight the sensitivity of the back-barrier and, in particular, the dune facies to changes in sea level and sediment supply, and show that microbial mats are effective at stabilizing island sediments and may be harbingers to barrier island response to rising sea level. As shown in this study, long-term monitoring of geomorphic facies changes and topography can detect important shifts in the island state that can be used to inform decision making for these sensitive coastal landscapes.  相似文献   
89.
Recent studies of continental carbonates revealed that carbonates with similar fabrics can be formed either by biotic, biologically-induced, biologically-influenced or purely abiotic processes, or a combination of all. The aim of this research is to advance knowledge on the formation of carbonates precipitated (or diagenetically altered) in extreme, continental environments by studying biotic versus abiotic mechanisms of crystallization, and to contribute to the astrobiology debate around terrestrial analogues of Martian extreme environments. Both fossil (upper Pleistocene to Holocene) and active carbonate spring mounds from the Great Artesian Basin (South Australia) have been investigated. These carbonates consist of low-Mg to high-Mg calcite tufa. Four facies have been described: (i) carbonate mudstone/wackestone; (ii) phytohermal framestone/boundstone; (iii) micrite boundstone; and (iv) coarsely crystalline boundstone. The presence of filaments encrusted by micrite, rich in organic compounds, including ultraviolet-protectants, in phytohermal framestone/boundstone and micrite boundstone is clear evidence of the existence of microbial mats at the time of deposition. In contrast, peloidal micrite, despite commonly being considered a microbial precipitate, is not directly associated with filaments in the Great Artesian Basin mounds. It has probably formed from nanocrystal aggregation on colloid particulate. Thus, where biofilms have been documented, it is likely that bacteria catalyzed the development of fabrics. It is less certain that microbes induced calcium carbonate precipitation elsewhere. Trace elements, including rare earth element distribution from laminated facies, highlight strongly evaporative settings (for example, high Li contents). Carbon dioxide degassing and evaporation are two of the main drivers for an increase in fluid alkalinity, resulting in precipitation of carbonates. Hence, although the growth of certain fabrics is fostered by the presence of microbial mats, the formation of carbonate crystals might be independent from it and mainly driven by extrinsic factors. More generally, biological processes may be responsible for fabric and facies development in micritic boundstone whilst micrite nucleation and growth are driven by abiotic factors. Non-classical crystallization pathways (aggregation and fusion of nanoparticles from nucleation clusters) may be more common than previously thought in spring carbonate and this should be carefully considered to avoid misinterpretation of certain fabrics as by-products of life. It is proposed here that the term ‘organic-compound catalyzed mineralization’ should be used for crystal growth in the presence of organic compounds when dealing with astrobiological problems. This term would account for the possibility of multiple crystallization pathways (including non-classical crystallization) that occurred directly from an aqueous solution without the direct influence of microbial mats.  相似文献   
90.
Although Late Cambrian microbial build-ups were recognized in the Point Peak Member of the Wilberns Formation in Central Texas (USA) nearly 70 years ago, only a few studies focused specifically on the build-ups themselves. This study focuses on the interpretation of the regional (15 measured sections described in literature representing an area of 8000 km2) and local (field and drone photogrammetry studies in a 25 km2 area from within south Mason County) microbial build-up occurrence, describes their growth phases and details their interactions with the surrounding inter-build-up sediments. The study establishes the occurrence of microbial build-ups in the lower and upper Point Peak members (the Point Peak Member is informally broken up into the lower Point Peak and the upper Point Peak members separated by Plectotrophia zone). The lower Point Peak Member consists of three <1 m thick microbial bioherms and biostrome units, in addition to heterolithic and skeletal/ooid grainstone and packstone beds. One, up to 14 m thick, microbial unit associated with inter-build-up skeletal and ooid grainstone and packstone beds, intercalated with mixed siliciclastic–carbonate silt beds, characterizes the upper Point Peak member. The microbial unit in the upper Point Peak member displays a three-phase growth evolution, from an initial colonization phase on flat based, rip-up clast lenses, to a second aggradation and lateral expansion phase, into a third well-defined capping phase. The ultimate demise of the microbial build-ups is interpreted to have been triggered by an increase of water turbidity caused by a sudden influx of fine siliciclastics. The lower Point Peak member represents inner ramp shallow subtidal and intertidal facies and the upper Point Peak member corresponds to mid-outer ramp subtidal facies. Understanding the morphological architecture and depositional context of these features is of importance for identifying signatures of early life on Earth.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号