首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6591篇
  免费   1932篇
  国内免费   3768篇
测绘学   123篇
大气科学   5606篇
地球物理   1115篇
地质学   1998篇
海洋学   1964篇
天文学   36篇
综合类   329篇
自然地理   1120篇
  2024年   83篇
  2023年   187篇
  2022年   355篇
  2021年   429篇
  2020年   451篇
  2019年   532篇
  2018年   412篇
  2017年   479篇
  2016年   401篇
  2015年   450篇
  2014年   609篇
  2013年   746篇
  2012年   582篇
  2011年   582篇
  2010年   445篇
  2009年   544篇
  2008年   551篇
  2007年   645篇
  2006年   581篇
  2005年   502篇
  2004年   365篇
  2003年   391篇
  2002年   280篇
  2001年   266篇
  2000年   269篇
  1999年   160篇
  1998年   157篇
  1997年   136篇
  1996年   124篇
  1995年   134篇
  1994年   120篇
  1993年   62篇
  1992年   63篇
  1991年   48篇
  1990年   26篇
  1989年   31篇
  1988年   33篇
  1987年   8篇
  1986年   12篇
  1985年   11篇
  1984年   7篇
  1983年   3篇
  1982年   1篇
  1981年   5篇
  1980年   8篇
  1978年   1篇
  1977年   2篇
  1954年   2篇
排序方式: 共有10000条查询结果,搜索用时 671 毫秒
991.
Vegetation changes can significantly affect catchment water balance. It is important to evaluate the effects of vegetation cover change on streamflow as changes in streamflow relate to water security. This study focuses on the use of statistical methods to determine responses in streamflow at seven paired catchments in Australia, New Zealand, and South Africa to vegetation change. The non‐parametric Mann–Kendall test and Pettitt's test were used to identify trends and change points in the annual streamflow records. Statistically significant trends in annual streamflow were detected for most of the treated catchments. It took between 3 and 10 years for a change in vegetation cover to result in significant change in annual streamflow. Presence of the change points in streamflow was associated with changes in the mean, variance, and distribution of annual streamflow. The streamflow in the deforestation catchments increased after the change points, whereas reduction in streamflow was observed in the afforestation catchments. The streamflow response is mainly affected by the climate and underlying vegetation change. Daily flow duration curves (FDCs) for the whole period and pre‐change and post‐change point periods also were analysed to investigate the changes in flow regime. Three types of vegetation change effects on the flow regime have been identified. The relative reductions in most percentile flows are constant in the afforestation catchments. The comparison of trend, change point, and FDC in the annual streamflow from the paired experiments reflects the important role of the vegetation change. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
992.
Abstract

To advance understanding of hydroclimatological processes, this paper links spatiotemporal variability in gridded European precipitation and large-scale mean sea-level pressure (MSLP) time series (1957–2002) using monthly concurrent correlation. Strong negative (positive) correlation near Iceland and (the Azores) is apparent for precipitation in northwest Europe, confirming a positive North Atlantic Oscillation (NAO) association. An opposing pattern is found for southwest Europe, and the Mediterranean in winter. In the lee of mountains, MSLP correlation is lower reflecting reduced influence of westerlies on precipitation generation. Importantly, European precipitation is shown to be controlled by physically interpretable climate patterns that change in extent and position from month to month. In spring, MSLP–precipitation correlation patterns move and shrink, reaching a minimum in summer, before expanding in the autumn, and forming an NAO-like dipole in winter. These space–time shifts in correlation regions explain why fixed-point NAO indices have limited ability to resolve precipitation for some European locations and seasons.

Editor Z.W. Kundzewicz; Associate editor A. Montanari

Citation Lavers, D., Prudhomme, C., and Hannah, D.M., 2013. European precipitation connections with large-scale mean sea-level pressure (MSLP) fields. Hydrological Sciences Journal, 58 (2), 310–327.  相似文献   
993.
Z. X. Xu  J. Y. Li  C. M. Liu 《水文研究》2007,21(14):1935-1948
Some previous studies have shown that drying‐up of the lower Yellow River resulted from decreasing precipitation and excessive industrial and agricultural consumption of water from the middle and downstream regions of the Yellow River. On the basis of average air temperature, precipitation, and pan evaporation data from nearly 80 gauging stations in the Yellow River basin, the monotonic trends of major climate variables over the past several decades are analysed. The analysis was mainly made for 12 months and the annual means. The isograms for annual and typical months are given in the paper. The result shows that the average temperature in the study area exhibits an increasing trend, mainly because of the increase of temperature in December, January and February. The largest trend is shown in December and the smallest is in August. There are 65 of 77 stations exhibiting a downward trend for annual precipitation. In all seasons except summer, there is a similar trend in the upstream region of the Yellow River, south of latitude 35°N. It is interesting to note that the pan evaporation has decreased in most areas of the Yellow River basin during the past several decades. April and July showed the greatest magnitude of slope, and the area from Sanmenxia to Huayuankou as well as the Yiluo River basin exhibited the strongest declining trend. The conclusion is that the decreasing pan evaporation results from complex changes of air temperature, relative humidity, solar radiation, and wind speed, and both climate change and human activities have affected the flow regime of the Yellow River during the past several decades. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
994.
995.
A modified global model for predicting the tritium concentration in precipitation has been developed using the dataset of International Atomic Energy Agency/the World Meteorological Organization (IAEA/WMO) over the period from 1960 to 2005. The tritium concentration in precipitation and its history can be estimated at any location using the model. The modified global model of tritium in precipitation (MGMTP) here presented has higher accuracy than the global model of tritium in precipitation (GMTP) developed by Doney et al. ( 1992 ). The new model is not only more appropriate for a particular station but also applicable for the un‐normalized observations directly. Another advantage of MGMTP is that it can estimate a longer history (from 1960 to 2005) of tritium content in precipitation than GMTP (from 1960 to 1986). The seasonal cycle of tritium in precipitation has also been modelled in the form of a simple cosine function with five parameters. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
996.
Hydrological processes of lowland watersheds of the southern USA are not well understood compared to a hilly landscape due to their unique topography, soil compositions, and climate. This study describes the seasonal relationships between rainfall patterns and runoff (sum of storm flow and base flow) using 13 years (1964–1976) of rainfall and stream flow data for a low‐gradient, third‐order forested watershed. It was hypothesized that runoff–rainfall ratios (R/P) are smaller during the dry periods (summer and fall) and greater during the wet periods (winter and spring). We found a large seasonal variability in event R/P potentially due to differences in forest evapotranspiration that affected seasonal soil moisture conditions. Linear regression analysis results revealed a significant relationship between rainfall and runoff for wet (r2 = 0·68; p < 0·01) and dry (r2 = 0·19; p = 0·02) periods. Rainfall‐runoff relationships based on a 5‐day antecedent precipitation index (API) showed significant (r2 = 0·39; p < 0·01) correspondence for wet but not (r2 = 0·02; p = 0·56) for dry conditions. The same was true for rainfall‐runoff relationships based on 30‐day API (r2 = 0·39; p < 0·01 for wet and r2 = 0·00; p = 0·79 for dry). Stepwise regression analyses suggested that runoff was controlled mainly by rainfall amount and initial soil moisture conditions as represented by the initial flow rate of a storm event. Mean event R/P were higher for the wet period (R/P = 0·33), and the wet antecedent soil moisture condition based on 5‐day (R/P = 0·25) and 30‐day (R/P = 0·26) prior API than those for the dry period conditions. This study suggests that soil water status, i.e. antecedent soil moisture and groundwater table level, is important besides the rainfall to seasonal runoff generation in the coastal plain region with shallow soil argillic horizons. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
997.
Mean-sea-level data from coastal tide gauges in the north Indian Ocean were used to show that low-frequency variability is consistent among the stations in the basin. Statistically significant trends obtained from records longer than 40 years yielded sea-level-rise estimates between 1.06–1.75 mm yr− 1, with a regional average of 1.29 mm yr− 1, when corrected for global isostatic adjustment (GIA) using model data. These estimates are consistent with the 1–2 mm yr− 1 global sea-level-rise estimates reported by the Intergovernmental Panel on Climate Change.  相似文献   
998.
1 INTRODUCTION In southern high latitudes, recent observations have shown a standing mode of ACW (Antarctic Circumpolar Wave) with eastward propagation across the Southern Ocean of the Antarctic in co- varying SST (sea surface temperature) and SLP (sea le…  相似文献   
999.
Using tropical cyclone (TC) best track and intensity of the western North Pacific data from the Joint TyphoonWarning Center (JTWC) of the United States and the NCEP/NCAR reanalysis data for the period of 1992-2002, the effects of vertical wind shear on TC intensity are examined. The samples were limited to the westward or northwestward moving TCs between 5°N and 20°N in order to minimize thermodynamic effects. It is found that the effect of vertical wind shear between 200 and 500 hPa on TC intensity change is larger than that of the shear between 500 and 850 hPa, while similar to that of the shear between 200 and 850 hPa. Vertical wind shear may have a threshold value, which tends to decrease as TC intensifies. As the intensifying rate of TC weakens, the average shear increases. The large shear has the obvious trend of inhibiting TC development. The average shear of TC which can develop into typhoon (tropical depression or tropical storm) is below 7 m s-1 (above 8 m s-1).  相似文献   
1000.
用地基GPS资料分析大气可降水汽总量   总被引:16,自引:5,他引:11  
利用“中国地壳运动监测网络”和三峡监测网的地基GPS资料,通过Bernese软件以及根据Bevis等和Rocken等水汽解算原理编制的水汽解算软件。获得了武汉、巴东、兴山、泸州等长江流域测站大气可降水汽总量分布和时间间隔为2小时的GPS遥感大气可降水汽序列,并与站点雨量及区域面雨量进行对比分析,结果表明:地基GPS遥感水汽量变化与地面降水有很好的相关性。而且GPS遥感水汽变化序列峰值对应于强降水提前了8~22小时。有助于强降水特别是突发性强降水的预测;多个站点的GPS遥感水汽总量联合分析,对于区域水汽总量变化研究有一定意义。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号