首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   132篇
  免费   17篇
  国内免费   31篇
测绘学   2篇
大气科学   3篇
地球物理   39篇
地质学   66篇
海洋学   56篇
综合类   3篇
自然地理   11篇
  2022年   9篇
  2021年   11篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   3篇
  2016年   2篇
  2015年   8篇
  2014年   4篇
  2013年   6篇
  2012年   5篇
  2011年   6篇
  2010年   4篇
  2009年   9篇
  2008年   10篇
  2007年   7篇
  2006年   14篇
  2005年   11篇
  2004年   9篇
  2003年   10篇
  2002年   8篇
  2001年   4篇
  2000年   4篇
  1999年   7篇
  1998年   1篇
  1997年   7篇
  1996年   2篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1985年   4篇
  1984年   1篇
  1982年   2篇
排序方式: 共有180条查询结果,搜索用时 46 毫秒
171.
遥感生物地球化学找金矿方法研究进展   总被引:7,自引:0,他引:7  
总结了金矿的生物地球化学性质、植物的生物地球化学效应特征以及其波谱和遥感影像特征,以及利用遥感图像处理提取生物地球化学效应引起的植被光谱异常信息的专题信息提取方法。研究表明,在金矿区上生长的植物对金及伴生元素有较强的吸收和聚积作用,植物明显受到生物地球化学效应的毒化作用;金及伴生元素的过量吸收,使植物叶片中的叶绿素、类胡萝卜素含量、水含量和叶面温度相应降低;植物叶片细胞结构发生变异,叶冠波谱反射率和波形等光谱特征明显变化;在遥感图像上,金矿区的植被表现出异常特征信息。这些信息可以作为在植被区寻找隐伏矿床的遥感生物地球化学找矿的标志。利用遥感生物地球化学的理论和技术方法,从遥感数据中分析金矿的植被图像特征,提取与金矿化有关的植被异常特征信息,可以优先出金矿化遥感异常区,并列举了几个应用实例。同时,指出了需加强该领域的理论和应用研究,为广大植被覆盖地区寻求一种快速有效的探矿方法。  相似文献   
172.
湖泊碳循环是全球碳循环过程中的重要环节,随着全球碳循环研究的不断深入,湖泊碳循环对全球碳循环的影响,以及其对全球气候变化的调节作用越来越受到关注.然而,由于湖泊分布的破碎性(大于0.002 km2的湖泊约有1.17×108个,并零星地分布在全球)和多样性(流域生态多样性,湖泊类型多样性,分布的气候带多样性等),使得全面...  相似文献   
173.
极端环境下的微生物及其生物地球化学作用   总被引:7,自引:1,他引:6  
陈骏  连宾  王斌  H.H.TENG 《地学前缘》2006,13(6):199-207
极端微生物是地球生物圈的重要组成部分。极端微生物的地球化学定位在微生物学与地球化学以及一些相关学科的交叉点上,最近10年已经发展成为地质生物学研究的热门领域。对极端微生物的研究不仅有助于回答生命起源、生命极限、生命本质甚至其他生命形式等生命科学问题,而且其生物地球化学作用在地球系统科学研究中具有重大科学研究价值,对揭示生物圈与地圈协同演化的奥秘、认识生命与环境相互作用规律及地球的化学演化提供重要证据。总结了嗜热菌、嗜冷菌、嗜酸菌、嗜碱菌、嗜压菌、嗜盐菌以及抗辐射菌的主要类群,论述了极端微生物适应环境的机制,探讨了极端微生物的生物地球化学意义。作者预测未来将会在生物标志化合物研究、同位素地球化学分析和分子生物学综合研究的基础上协同推进极端微生物地球化学学科的发展。  相似文献   
174.
Research into global hot spots of dust emission has focused on exposed fine‐grained sediments in palaeo‐ or ephemeral dryland lake basins including Etosha (Namibia) and Makgadikgadi (Botswana) in southern Africa. Namibia's western ephemeral river valleys are also known to produce dust but have remained largely overlooked as a regionally significant source. Nutrient enrichment of valley sediments and proximity to the South Atlantic suggests aeolian dust could play an important role in ocean fertilization. The fertility of valley dust is dependent on fluvial sediments originating in the upper catchments on the Southern African Central Plateau. In this study we investigate climate, geology, vegetation and land use variability and how these may influence the nitrogen, phosphorus and iron availability in the catchments. We intensely sampled the Huab, Kuiseb and Tsauchab river systems to map the spatial distribution of nutrients from upper catchments to river termini. Samples were analysed for the bioavailable fractions of iron, nitrogen and phosphorus as well as total nitrogen and phosphorus. Results show that the lower valley reaches are sources of aeolian dust enriched in nutrients. Nitrogen levels correlate with precipitation and vegetation levels and phosphorus levels with geology. However, differences in upper catchment sediment nutrient levels were not representative of downstream nutrient differences between valleys. Rather, it is the hydrological and geomorphological processes of the ephemeral river systems that are key for producing the enriched sediments in the lower reaches. We demonstrate that the ephemeral river valleys of western Namibia are an extensive and enriched source of mineral dust that could play a critical role in marine productivity of the southern Atlantic. © 2017 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   
175.
南海海域海水中各形态磷的化学分布特征   总被引:6,自引:0,他引:6  
根据1998年7月和1999年1月两个航次的调查资料,对南海水体中磷的含量分布以及夏、冬季变化规律进行了探讨.结果表明,南海表层水体中磷酸盐夏季含量明显低于冬季,夏季平均含量为0.004μmol/dm3,而冬季为0.35 μmol/dm3;有机磷含量夏季高于冬季,含量分别为0.12,0.04 μmol/dm3;总磷含量的季节变化与无机磷酸盐类似,夏、冬季含量分别为0.22,0.61 μmol/dm3.在垂向分布上表层50 m水柱中PO43--P,总溶解态磷和总磷含量最小,随水深增加基本上呈线性快速增加,至500 m增加减缓,1 000 m左右为最大含量,然后随着水深略有下降.在夏季垂直分布比较典型,不同站位在一水深的含量离散性小,而冬季PO43--P,总溶解态磷和总磷的垂直分布则显得离散性大,尤其是PO43--P分布在200 m左右出现最大值,说明当年冬季南海各区域存在着较大水文、生物差异,很大的影响了化学环境的变化.在南海表层水中通常以有机磷占优势,在150 m深处以下的水中则以无机磷为主.深水中溶解的有机磷含量一般随水深减少.夏季的有机磷明显高于冬季,表明夏季的生物作用强烈.  相似文献   
176.
Sulfur and nitrogen input–output budgets were estimated for five forested Appalachian Plateau basins in Pennsylvania for the period October 1988 to March 1990. Wet and dry deposition inputs were determined on a weekly basis from data collected at atmospheric deposition monitoring stations located near the study sites. Stream export was estimated from intensively sampled stream chemistry and continuous discharge data collected on all five basins. On four of the five basins, deposited sulfur was essentially in balance with stream flow export of sulfur (92–120% exported) for the 1989 water year. The fifth basin had net retention of deposited sulfur, with only 42% exported. All five basins retained the vast majority of deposited nitrogen (only 3–18% exported). The fraction of atmospherically deposited sulfur exported in stream flow was greater by a mean factor of 14 versus nitrogen, implying that sulfur dominates base cation leaching processes on these non-carbonate-based catchments. Although basins in the study were relatively homogeneous in terms of topography, climate, geology and land use, local basin conditions caused significant differences in input–output budgets, pointing to the need for replicated basin studies in a region. © 1997 John Wiley & Sons, Ltd.  相似文献   
177.
Prompted by recent data analyses suggesting that the flux of particulate organic carbon sinking into deep waters is determined by fluxes of mineral ballasts, we undertook a study of the relationships among organic matter (OM), calcium carbonate, opal, lithogenic material, and excess aluminum fluxes as part of the MedFlux project. We measured fluxes of particulate components during Spring and Summer of 2003, and Spring of 2005, using a swimmer-excluding sediment trap design capable of measuring fluxes both in a time-series (TS) mode and in a configuration for obtaining particle settling velocity (SV) profiles. On the basis of these studies, we suggest that distinct OM–ballast associations observed in particles sinking at a depth of 200 m imply that the mechanistic basis of the organic matter–ballast association is set in the upper water column above the Twilight Zone, and that the importance of different ballast types follows the seasonal succession of phytoplankton. As in other studies, carbonate appears to enhance the flux of organic matter over opal. Particles must be at least half organic matter before their settling velocity is affected by ballast concentration. This lack of change in ballast composition with SV in particles with <40% OM content suggests that particle SV reaches a maximum because of the increasing importance of inertial drag. Relative amounts of OM and opal decrease with depth due to decomposition and dissolution; carbonates and lithogenic material contribute about the same amount to total mass, or increase slightly, throughout the water column. The high proportion of excess Al cannot be explained by its incorporation into diatom opal or reverse weathering, so Al is most likely adsorbed to particulate oxides. On shorter time scales, dust appears to increase particle flux through its role in aggregation rather than by nutrient inputs enhancing productivity. We suggest that the role of dust as a catalyst in particle formation may be a central mechanism in flux formation in this region, particularly when zooplankton fecal pellet production is low.  相似文献   
178.
Physico-chemical properties in the brine and under-ice water were measured in Saroma-ko Lagoon on the northeastern coast of Hokkaido, Japan, which is connected to the Sea of Okhotsk, during the period from mid-February through mid-March 2006. The brine within brine channels of the sea ice was collected with a new sampling method examined in this study. Salinity, dissolved inorganic carbon (DIC), total alkalinity (TA), dissolved oxygen (DO), nutrients and oxygen isotopic ratio (δ18O) contained in the brine within brine channels of the sea ice and in the under-ice water varied largely in both time and space during the ice melt period, when discharge from Saromabetsu River located on the southeast of the lagoon increased markedly due to the onset of snow melting. The under-ice plume expands as far as 4.5 km from the river mouth at mid-March 2006, transporting chemical components supplied from the river into the lagoon. The under-ice river water was likely transported into the sea ice through well-developed brine channels in the sea ice due to upward flushing of water through brine channels occurred by loading of snowfalls deposited over the sea ice. These results suggest that the river water plume plays an important role in supplying chemical components into the sea ice, which may be a key process influencing the biogeochemical cycle in the seasonally ice-covered Saroma-ko Lagoon.  相似文献   
179.
To examine the influence of river discharge on plankton metabolic balance in a monsoon driven tropical estuary, daily variations in physico-chemical and nutrients characteristics were studied over a period of 15 months (September 2007 to November 2008) at a fixed location (Yanam) in the Godavari estuary, India. River discharge was at its peak during July to September with a sharp decrease in the middle of December and complete cessation thereafter. Significant amount of dissolved inorganic nitrogen (DIN, of 22–26 μmol l−1) and dissolved inorganic phosphate (DIP, of 3–4 μmol l−1) along with suspended materials (0.2–0.5 g l−1) were found at the study region during the peak discharge period. A net heterotrophy with low gross primary production (GPP) occurred during the peak discharge period. The Chlorophyll a (Chl a) varied between 4 and 18 mg m−3 that reached maximum levels when river discharge and suspended loads decreased by >75% compared to that during peak period. High productivity was sustained for about one and half months during October to November when net community production (NCP) turned from net heterotrophy to autotrophy in the photic zone. Rapid decrease in nutrients (DIN and DIP by ∼15 and 1.4 μmol l−1, respectively) was observed during the peak Chl a period of two weeks. Chl a in the post monsoon (October–November) was negatively related to river discharge. Another peak in Chl a in January to February was associated with higher nutrient concentrations and high DIN:DIP ratios suggest possible external supply of nitrogen into the system. The mean photic zone productivity to respiration ratio (P:R) was 2.38 ± 0.24 for the entire study period (September 2007–November 2008). Nevertheless, the ratio of GPP to the entire water column respiration was only 0.14 ± 0.02 revealing that primary production was not enough to support water column heterotrophic activity. The excess carbon demand by the heterotrophs could be met from the allochthonous inputs of mainly terrestrial origin. Assuming that the entire phytoplankton produced organic material was utilized, the additional terrestrial organic carbon supported the total bacterial activity (97–99%) during peak discharge period and 40–75% during dry period. Therefore, large amount of terrestrial organic carbon is getting decomposed in the Godavari estuarine system.  相似文献   
180.
The use of dissolved Al as a tracer for oceanic water masses and atmospheric dust deposition of biologically important elements, such as iron, requires the quantitative assessment of its sources and sinks in seawater. Here, we address the relative importance of oceanic versus atmospheric inputs of Al, and the relationship with nutrient cycling, in a region of high biological productivity in coastal Antarctica. We investigate the concentrations of dissolved Al in seawater, sea ice, meteoric water and sediments collected from northern Marguerite Bay, off the West Antarctic Peninsula, from 2005 to 2006. Dissolved Al concentrations at 15 m water depth varied between 2 and 27 nM, showing a peak between two phytoplankton blooms. We find that, in this coastal setting, upwelling and incorporation of waters from below the surface mixed layer are responsible for this peak in dissolved Al as well as renewal of nutrients. This means that changes in the intensity and frequency of upwelling events may result in changes in biological production and carbon uptake. The waters below the mixed layer are most likely enriched in Al as a result of sea ice formation, either causing the injection of Al-rich brines or the resuspension of sediments and entrainment of pore fluids by brine cascades. Glacial, snow and sea ice melt contribute secondarily to the supply of Al to surface waters. Total particulate Al ranges from 93 to 2057 mg/g, and increases with meteoric water input towards the end of the summer, indicating glacial runoff is an important source of particulate Al. The (Al/Si)opal of sediment core top material is considerably higher than water column opal collected by sediment traps, indicative of a diagenetic overprint and incorporation of Al at the sediment–water interface. Opal that remains buried in the sediment could represent a significant sink of Al from seawater.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号