首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9589篇
  免费   1551篇
  国内免费   1523篇
测绘学   205篇
大气科学   903篇
地球物理   1962篇
地质学   3939篇
海洋学   1670篇
天文学   9篇
综合类   479篇
自然地理   3496篇
  2024年   42篇
  2023年   161篇
  2022年   421篇
  2021年   447篇
  2020年   408篇
  2019年   455篇
  2018年   391篇
  2017年   447篇
  2016年   429篇
  2015年   484篇
  2014年   610篇
  2013年   679篇
  2012年   600篇
  2011年   640篇
  2010年   528篇
  2009年   588篇
  2008年   625篇
  2007年   677篇
  2006年   628篇
  2005年   487篇
  2004年   462篇
  2003年   438篇
  2002年   285篇
  2001年   254篇
  2000年   258篇
  1999年   212篇
  1998年   146篇
  1997年   137篇
  1996年   133篇
  1995年   117篇
  1994年   114篇
  1993年   81篇
  1992年   75篇
  1991年   62篇
  1990年   47篇
  1989年   31篇
  1988年   19篇
  1987年   6篇
  1986年   8篇
  1985年   8篇
  1984年   4篇
  1983年   3篇
  1982年   2篇
  1981年   9篇
  1979年   3篇
  1977年   1篇
  1976年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
971.
Potential evapotranspiration (PET) is a key input to hydrological models. Its estimation has often been via the Penman–Monteith (P–M) equation, most recently in the form of an estimate of reference evapotranspiration (RET) as recommended by FAO‐56. In this paper the Shuttleworth–Wallace (S–W) model is implemented to estimate PET directly in a form that recognizes vegetation diversity and temporal change without reference to experimental measurements and without calibration. The threshold values of vegetation parameters are drawn from the literature based on the International Geosphere–Biosphere Programme land cover classification. The spatial and temporal variation of the LAI of vegetation is derived from the composite NOAA‐AVHRR normalized difference vegetation index (NDVI) using a method based on the SiB2 model, and the Climate Research Unit database is used to provide the required meteorological data. All these data inputs are publicly and globally available. Consequently, the implementation of the S–W model developed in this study is applicable at the global scale, an essential requirement if it is to be applied in data‐poor or ungauged large basins. A comparison is made between the FAO‐56 method and the S–W model when applied to the Yellow River basin for the whole of the last century. The resulting estimates of RET and PET and their association with vegetation types and leaf area index (LAI) are examined over the whole basin both annual and monthly and at six specific points. The effect of NDVI on the PET estimate is further evaluated by replacing the monthly NDVI product with the 10‐day product. Multiple regression relationships between monthly PET, RET, LAI, and climatic variables are explored for categories of vegetation types. The estimated RET is a good climatic index that adequately reflects the temporal change and spatial distribution of climate over the basin, but the PET estimated using the S–W model not only reflects the changes in climate, but also the vegetation distribution and the development of vegetation in response to climate. Although good statistical relationships can be established between PET, RET and/or climatic variables, applying these relationships likely will result in large errors because of the strong non‐linearity and scatter between the PET and the LAI of vegetation. It is concluded that use of the implementation of the S–W model described in this study results in a physically sound estimate of PET that accounts for changing land surface conditions. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
972.
Spring snow melt run‐off in high latitude and snow‐dominated drainage basins is generally the most significant annual hydrological event. Melt timing, duration, and flow magnitude are highly variable and influence regional climate, geomorphology, and hydrology. Arctic and sub‐arctic regions have sparse long‐term ground observations and these snow‐dominated hydrologic regimes are sensitive to the rapidly warming climate trends that characterize much of the northern latitudes. Passive microwave brightness temperatures are sensitive to changes in the liquid water content of the snow pack and make it possible to detect incipient melt, diurnal melt‐refreeze cycles, and the approximate end of snow cover on the ground over large regions. Special Sensor Microwave Imager (SSM/I) and Advanced Microwave Scanning Radiometer for EOS (AMSR‐E) passive microwave brightness temperatures (Tb) and diurnal amplitude variations (DAV) are used to investigate the spatial variability of snowmelt onset timing (in two stages, ‘DAV onset’ and ‘melt onset’) and duration for a complex sub‐arctic landscape during 2005. The satellites are sensitive to small percentages of liquid water, and therefore represent ‘incipient melt’, a condition somewhat earlier than a traditional definition of a melting snowpack. Incipient melt dates and duration are compared to topography, land cover, and hydrology to investigate the strength and significance of melt timing in heterogeneous landscapes in the Pelly River, a major tributary to the Yukon River. Microwave‐derived melt onset in this region in 2005 occurred from late February to late April. Upland areas melt 1–2 weeks later than lowland areas and have shorter transition periods. Melt timing and duration appear to be influenced by pixel elevation, aspect, and uniformity as well as other factors such as weather and snow mass distribution. The end of the transition season is uniform across sensors and across the basin in spite of a wide variety of pixel characteristics. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
973.
Runoff coefficients of the source regions of the Huanghe River in 1956–2000 were analyzed in this paper. In the 1990s runoff of Tangnaihai Hydrologic Station of the Huanghe River experienced a serious decrease, which had at- tracted considerable attention. Climate changes have important impact on the water resources availability. From the view of water cycling, runoff coefficients are important indexes of water resources in a particular catchment. Kalinin baseflow separation technique was improved based on the characteristics of precipitation and streamflow. After the separation of runoff coefficient (R/P), baseflow coefficient (Br/P) and direct runoff coefficient (Dr/P) were estimated. Statistic analyses were applied to assessing the impact of precipitation and temperature on runoff coefficients (including Dr/P, Br/P and R/P). The results show that in the source regions of the Huanghe River, mean annual baseflow coefficient was higher than mean annual direct runoff coefficient. Annual runoff coefficients were in direct proportion to annual pre- cipitation and in inverse proportion to annual mean temperature. The decrease of runoff coefficients in the 1990s was closely related to the decrease in precipitation and increase in temperature in the same period. Over different sub-basins of the source regions of the Huanghe River, runoff coefficients responded differently to precipitation and temperature. In the area above Jimai Hydrologic Station where annual mean temperature is –3.9oC, temperature is the main factor in- fluencing the runoff coefficients. Runoff coefficients were in inverse relation to temperature, and precipitation had nearly no impact on runoff coefficients. In subbasin between Jimai and Maqu Hydrologic Station Dr/P was mainly affected by precipitation while R/P and Br/P were both significantly influenced by precipitation and temperature. In the area be-tween Maqu and Tangnaihai hydrologic stations all the three runoff coefficients increased with the rising of annual precipitation, while direct runoff coefficient was inversely proportional to temperature. In the source regions of the Huanghe River with the increase of average annual temperature, the impacts of temperature on runoff coefficients be-come insignificant.  相似文献   
974.
The planning and management of water resources in the Shiyang River basin, China require a tool for assessing the impact of groundwater and stream use on water supply reliabilities and improving many environment‐related problems such as soil desertification induced by recent water‐related human activities. A coupled model, integrating rule‐based lumped surface water model and distributed three‐dimensional groundwater flow model, has been established to investigate surface water and groundwater management scenarios that may be designed to restore the deteriorated ecological environment of the downstream portion of the Shiyang River basin. More than 66% of the water level among 24 observation wells have simulation error less than 1·0 m. The overall trend of the temporal changes of simulated and observed surface runoff at the Caiqi gauging station remains almost the same. The calibration was considered satisfactory. Initial frameworks for water allocation, including agricultural water‐saving projects, water diversion within the basin and inter‐basin water transfer, reducing agricultural irrigation area and surface water use instead of groundwater exploitation at the downstream were figured out that would provide a rational use of water resources throughout the whole basin. Sixteen scenarios were modelled to find out the most appropriate management strategies. The results showed that in the two selected management options, the groundwater budget at the Minqin basin was about 1·4 × 108 m3/a and the ecological environment would be improved significantly, but the deficit existed at the Wuwei basin and the number was about 0·8 × 108 m3/a. Water demand for domestic, industry and urban green area would be met in the next 30 years, but the water shortage for meeting the demand of agricultural water use in the Shiyang River basin was about 2·2 × 108 m3/a. It is suggested that more inter‐basin water transfer should be required to obtain sustainable water resource use in the Shiyang River basin. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
975.
利用地球化学元素分析方法,对淮河源区中更新世黄土、古土壤剖面含有的化学元素及多种化学元素指标进行了分析。研究表明:区内中更新世以来的气候变化,主要以湿热气候为主,淋溶及氧化作用较强;表现在气温上HT-1~HT-3的气温较低,HT-4~HT-7的气温高,HT-8的气温又相对较低,其变化趋势表现为中更新世经历了从早期寒冷转湿热转温干,中期凉干转暖湿到晚期温湿转暖湿。  相似文献   
976.
Land use/cover change (LUCC) is one of the main boundary conditions which influence many hydrologic processes. In view of the importance of Taihu Lake Watershed in China and the urgency of discovering the impacts of LUCC on storm runoff, two flood events under five land cover scenarios in the Xitiaoxi River Basin of the upstream of Taihu Lake watershed were simulated by distributed hydrologic modeling system HEC-HMS. The influences of each land cover on storm runoff were discussed. It was concluded that under the same rainstorm the ascending order of runoff coefficient and peak flow produced by the 5 different land covers were woodland, shrub, grassland, arable land, and built-up land; the descending order of swelling time were woodland, shrub, grassland, arable land, and built-up land. Scenario of built-up land was the first to reach peak flow, then arable land, grassland, shrub, and woodland. There were close relationships between the runoff coefficients produced by the 5 different land covers. The degrees of impacts on runoff coefficient of land cover change modes were sorted by descending: woodland to built-up land, shrub to built-up land, grassland to built-up land, arable land to built-up land, woodland to arable land, shrub to arable land, arable land to grassland, shrub to grassland, grassland to arable land, and woodland to shrub. Urbanization will contribute to flood disaster, while forestation will mitigate flood disaster.  相似文献   
977.
The upstream‐downstream sediment budget along the Napo River (100 520 km2, 6300 m3 s?1) was studied in the Andean foothills of Ecuador, at the west of the Amazon basin. A comparative study was made during four hydrological cycles (2001–2005) for three hydrological stations located upstream, and during one hydrological cycle (2004–2005) for the fourth one located near the mouth of the Napo River (region of Iquitos in Peru). This analysis showed an unusual increase in the concentration of suspended sediment recorded for the western part of the Amazon plain. Like the runoff (81 l s?1 km2), which is a world's maximum, the erosion rate (1160 t km?2 year?1, i.e. 47% of total suspended solid (TSS) export at the exit of Ecuador), one of the highest for a floodplain basin is the result of a stepper slope than in the rest of the Andean foothills, where typically sedimentation phenomena are predominant, and can be explained in part by a greater tectonic activity. Similar phenomenes were evidenced in small mountainous rivers in New Guinea (Milliman and Syvitski, 1992; Milliman, 1995). On the headwaters of the Napo River drainage basin, the tectonic uplift causes the Pastaza Megafan's existence. This progressively diverts the course of Napo River towards north and also provokes the remobilization of fine fluvial deposits. Moreover, this geodynamic trend is completed by the impact of volcanic eruption, earthquakes and landslides. The combination of these phenomena, so common in the region, has provided a large sediment transfer, not only at present but also in the past, as can be confirmed by the presence of incised terraces, mainly formed by volcanic materials. Then, these results were compared with a similar study carried out further south in the Madeira basin at the Bolivian foothills. These studies show the spatio‐temporal variability of the relation between sediment transfer and geodynamic processes at the Andean Piedmont. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
978.
D. maculates is a kind of specialized Schizothoracinae fish has been locally listed as a protected animal in Xinjiang Province,China. Ili River located in north of Tianshan Mountain and Tarim River located in north of Qinghai-Tibetan Plateau were two main distribution areas of this fish. To investigate the genetic diversity and genetic structure of D. maculates,four populations from Tarim River system and two populations from Ili River system were collected in this study. A 570-bp sequence of the control region was obtained for 105 specimens. Twenty-four haplotypes were detected from six populations,only Kunes River population and Kashi River population shared haplotypes with each other. For all the populations examined,the haplotype diversity(h) was 0.904 8±0.012 6,nucleotide diversity(π) was 0.027 9±0.013 9,and the average number of pairwise nucleotide differences(k) was 15.878 3±7.139 1. The analysis of molecular variance(AMOVA) showed that 86.31% of the total genetic variation was apportioned among populations,and the variation within sampled populations was 13.69%. Genetic differences among sampled populations were highly significant. F st statistical test indicated that all populations were significantly divergent from each other(P 0.01). The largest F st value was between Yurungkash River population and Muzat River population,while the smallest F st value was between Kunes River population and Kashi River population. NJ phylogenetic tree of D-loop haplotypes revealed two main clades. The neutrality test and mismatch distribution analysis suggested that the fish had went through a recent population expansion. The uplift of Tianshan Mountain and movement of Qinghai-Tibetan Plateau might contribute to the wide genetic divergence of D. maculates in northwest China.  相似文献   
979.
本文针对海域管理中难以量化人类活动对海洋生态系统影响的问题,提出人海关系空间量化模型,通过完善概念模型、构建指标体系、确定权重及标准,最终利用作用强度和位置关系量化人类活动对海洋生态系统的影响,数值在0—1之间,等分为四个影响程度,由弱到强依次为微弱、中等、强烈和极强,并将该模型和量化方法应用于莱州湾海域。研究结果表明:整个莱州湾受人类活动的综合影响均值为0.425,处于中等影响程度;其中污水排放、围填海工程及港口航运是对莱州湾生态系统影响比较强烈的人类活动;研究海域中40%受到人类活动的强烈影响,44%为中等影响,16%为微弱影响。空间量化分析显示,人类活动对莱州湾近岸海域的综合影响比邻近外海强烈,其中影响较强烈的区域出现在西南近岸海区,而影响较微弱的海区则为莱州湾北部外海。该方法空间量化结果与莱州湾实际情况相符,说明人海关系空间量化模型适合定量化评估人类活动对该海域生态系统的影响,可为"山东半岛蓝色经济区"海域管理提供技术支持。  相似文献   
980.
陈斌  高飞  印萍  刘金庆 《海洋与湖沼》2015,46(6):1279-1291
基于2014年最新的洪、枯季节实测资料,分析了南渡江河口海域水文泥沙的季节性变化特征,借助台风"海鸥"过境期间的河道监测数据,研究了台风天气造成的洪水事件对河流入海水沙通量的影响。研究结果表明:(1)洪、枯季节河口海域的水体层化作用不强,洪季的水温高于枯季,但盐度低于枯季。水温呈现向海递减的趋势,而盐度整体分布较为均匀;(2)河口水体含沙量近岸大于远岸,枯季河口三角洲泥沙向西输运。洪季含沙量明显高于枯季,大量泥沙在台风季节被冲刷入海,而后向海或向西输运扩散;(3)河口海域为不规则全日潮,呈现东西向往复流特征。温度、盐度和浊度均呈现较强的潮汐性变化特征;(4)枯季河道内存在明显的盐水楔,锋面处的垂向梯度很大,在口门向陆大约12—15 km以远的河道水体不再受潮汐影响;(5)台风"海鸥"影响下,南渡江洪峰期间的径流量和含沙量均远远超过多年平均值,反映了南渡江河口地区"台风季节"的特点。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号