首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   239篇
  免费   11篇
  国内免费   2篇
测绘学   1篇
大气科学   9篇
地球物理   65篇
地质学   89篇
海洋学   24篇
天文学   2篇
自然地理   62篇
  2023年   1篇
  2021年   1篇
  2020年   5篇
  2019年   1篇
  2018年   2篇
  2017年   4篇
  2016年   5篇
  2015年   7篇
  2014年   3篇
  2013年   6篇
  2012年   3篇
  2011年   4篇
  2010年   3篇
  2009年   18篇
  2008年   23篇
  2007年   20篇
  2006年   18篇
  2005年   12篇
  2004年   13篇
  2003年   17篇
  2002年   10篇
  2001年   20篇
  2000年   16篇
  1999年   6篇
  1998年   3篇
  1997年   6篇
  1996年   5篇
  1995年   4篇
  1994年   4篇
  1993年   3篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1987年   2篇
  1978年   1篇
  1977年   1篇
排序方式: 共有252条查询结果,搜索用时 296 毫秒
41.
In 2007, intense swarms of deep, tectonic earthquakes, amounting to at least 5 300 epicentres, were detected near to Mount Upptyppingar, which forms part of the Kverkfjöll volcano system in Iceland’s Northern Volcanic Zone. Although micro-seismicity is common within such volcanic regions, the Upptyppingar swarms have been more intensive and persistent than any other deep-seated seismicity observed in Iceland. Here we outline the spatial and temporal changes in ongoing seismicity that began in February 2007; in addition, we document enhanced levels of GPS-derived crustal deformation, recorded within 25 km of the area of swarming. Besides displaying spatial clustering, the Upptyppingar micro-earthquakes are noteworthy because: (i) they concentrate at focal depths of 14–22 km; (ii) the swarms comprise brittle-type earthquakes < 2 in magnitude, yielding a b-value of 2.1; and (iii) several of the swarms originate at focal depths exceeding 18 km. Additionally, different parts of the affected region have exhibited seismicity at different times, with swarm sites alternating between distinct areas. The activity moved with time towards east-north-east and to shallower depths. Linear regression approximates the seismicity on a southward-dipping, ~41° plane. Alongside sustained earthquake activity, significant horizontal displacement was registered at two permanent GPS stations in the region. High strain rates are required to explain brittle fracturing under visco-elastic conditions within the Earth’s crust; similarly, intense, localised deformation at considerable depth is necessary to reconcile the measured surface deformation. Such remarkable seismicity and localised deformation suggests that magma is ascending into the base of the crust.  相似文献   
42.
The Katla volcano in Iceland is characterized by subglacial explosive eruptions of Fe–Ti basalt composition. Although the nature and products of historical Katla eruptions (i.e. over the last 1,100 years) at the volcano is well-documented, the long term evolution of Katla’s volcanic activity and magma production is less well known. A study of the tephra stratigraphy from a composite soil section to the east of the volcano has been undertaken with emphasis on the prehistoric deposits. The section records ∼8,400 years of explosive activity at Katla volcano and includes 208 tephra layers of which 126 samples were analysed for major-element composition. The age of individual Katla layers was calculated using soil accumulation rates (SAR) derived from soil thicknesses between 14C-dated marker tephra layers. Temporal variations in major-element compositions of the basaltic tephra divide the ∼8,400-year record into eight intervals with durations of 510–1,750 years. Concentrations of incompatible elements (e.g. K2O) in individual intervals reveal changes that are characterized as constant, irregular, and increasing. These variations in incompatible elements correlate with changes in other major-element concentrations and suggest that the magmatic evolution of the basalts beneath Katla is primarily controlled by fractional crystallisation. In addition, binary mixing between a basaltic component and a silicic melt is inferred for several tephra layers of intermediate composition. Small to moderate eruptions of silicic tephra (SILK) occur throughout the Holocene. However, these events do not appear to exhibit strong influence on the magmatic evolution of the basalts. Nevertheless, peaks in the frequency of basaltic and silicic eruptions are contemporaneous. The observed pattern of change in tephra composition within individual time intervals suggests different conditions in the plumbing system beneath Katla volcano. At present, the cause of change of the magma plumbing system is not clear, but might be related to eruptions of eight known Holocene lavas around the volcano. Two cycles are observed throughout the Holocene, each involving three stages of plumbing system evolution. A cycle begins with an interval characterized by simple plumbing system, as indicated by uniform major element compositions. This is followed by an interval of sill and dyke system, as depicted by irregular temporal variations in major element compositions. This stage eventually leads to a formation of a magma chamber, represented by an interval with increasing concentrations of incompatible elements with time. The eruption frequency within the cycle increases from the stage of a simple plumbing system to the sill and dyke complex stage and then drops again during magma chamber stage. In accordance with this model, Katla volcano is at present in the first interval (i.e. simple plumbing system) of the third cycle because the activity in historical time has been characterized by uniform magma composition and relatively low eruption frequency.  相似文献   
43.
44.
A small-aperture, strong-motion array, the ICEARRAY, has been deployed in South Iceland, a region with a history of destructive earthquakes, some exceeding magnitude 7. The array’s purpose is: (1) monitoring future significant events in the region, (2) quantifying spatial variability of strong-motion over short distances and (3) shedding light on earthquake source processes. The number of array stations and their arrangement were based on an optimisation of the shape of the corresponding array transfer function (ATF). The optimal ICEARRAY configuration comprises 14 stations, has an aperture of ~1.9 km and a minimum interelement distance of ~50 m and possesses a near-azimuthally independent ATF with a sharp main lobe, negligible sidelobes and a wavenumber range of 1.5–24 rad/km. Accordingly, the ICEARRAY has the intended capabilities of capturing seismic waves in the frequency range of 1–20 Hz, which is of main interest to earthquake engineering and engineering seismology applications.  相似文献   
45.
This preliminary study aims to investigate a M w 6.3 earthquake that occurred in South Iceland on Thursday 29 May 2008 at 15:45 UTC. The epicentre was in the Olfus District between the towns of Selfoss and Hveragerdi. This study examines the data recorded and the damage observed immediately after the event. Horizontal accelerations of up to 80%g were recorded in the epicentral region and there is visual evidence that the vertical acceleration exceeded 1 g. The PGA data is compared to a ground motion estimation model developed for the South Iceland earthquakes in June 2000. In general the basic properties of this event are found to be similar to the characteristics of the South Iceland earthquakes in June 2000. The duration of strong-motion is short and the intensity attenuates rapidly with increasing distance. The earthquake action resisted by buildings in the near fault area is inspected through evaluation of elastic as well as inelastic response spectra. The vast majority of structures seemed to withstand the strong-motion fairly competently and without significant visual damage due firstly to the low-rise, predominantly reinforced concrete or timber, style of buildings. Secondly, the short duration of strong-motion contributed to the endurance of structures.  相似文献   
46.
The present study is the first to compare trophic relationships of several co-occurring phytal harpacticoid species, in their natural habitat, using both δ13C and δ15N signatures. Three phytal harpacticoid species/taxa (Zaus spinatus, Tisbe spp., and Parathalestris cf. intermedia) all collected from the alga Fucus serratus, at different times of the year, were analyzed. The results indicated that the harpacticoids were utilizing food sources differently. Specific food sources of the three species/taxa could not be accurately pinpointed, but there were strong indications that F. serratus and fragments from it did contribute significantly to the diet of P. cf. intermedia and Tisbe spp. Both of these harpacticoid species overlapped in δ13C and δ15N values with some of the macrofaunal species, collected from the same site in Hvassahraun, Iceland, while no overlap was seen for Z. spinatus. The signatures for Z. spinatus indicated that its food sources changed seasonally.  相似文献   
47.
The Tjörnes facture zone (TFZ) connects the EW extension of the Mid-Atlantic ridge north of Iceland to the extension of the North volcanic zone (NVZ) of Iceland. Earthquakes up to magnitude 7 (Ms) can occur in TFZ, volcanic eruptions have been observed and large crustal deformations are expected in similar way as have been observed in the NVZ. Most of the zone is below ocean, which limits the historical information and geological observations. For studying the dynamics of the zone we must rely on interpretation and modelling based on seismic observations, especially on microearthquake observations for the last 10 years. In this paper we demonstrate how microearthquakes can be applied to map the details of the plate boundary, and how this information can be applied to find epicenters and fault planes of large historical earthquakes, also how seismic information can be applied in dynamic modelling and to infer spatial and temporal interplay in activity, and to enhance hazard assessment.  相似文献   
48.
From April to July 2002 we carried out a deployment of 6 ocean bottom seismometers and 4 ocean bottom hydrophones in the North Atlantic south of Iceland. During the deployment period we recorded clear Rayleigh waves from 2 regional and 14 teleseismic earthquakes. This corresponds to a Rayleigh wave detection rate of nearly 92% for events with MW ≥ 6.06.0 and epicentral distance less than 110°, close to detection rate estimates based on noise level variability. We measured Rayleigh wave event-station group dispersion and inter-station phase dispersion for one Mid-Atlantic Ridge event. The group dispersion curve is sensitive to the structure of the North-East Atlantic with an average age of  39 Myr. The phase dispersion curve is sensitive to the structure just south of Iceland (average plate age 33 Myr). Both dispersion curves indicate faster velocities than previously postulated for oceanic plate generated at the Reykjanes Ridge. A grid search approach was used to constrain the range of models fitting the data. The high velocity seismic lid just south of Iceland in the model for the phase dispersion path is slower or thinner than in the group dispersion model, which averages over a larger area and a somewhat older plate age, but the velocities in the low velocity half space are similar. We further consider the residual bathymetry in the experimental area. The residual anomaly decreases by 300–400 m from the Reykjanes Ridge to the  30 Myr old plate south of Iceland. This decrease can be explained by the disappearance of a mantle thermal anomaly associated with the Iceland plume. Both the residual bathymetry and the surface wave data are thus consistent with the notion that the southward spreading of the Icelandic plume is channelised underneath the Reykjanes Ridge and does not spread far outside this channel.Based on the experience from the pilot experiment, we estimate that a minimum recording time of 13–15 months in favourable weather conditions (April–September) is required to record enough data to map the spreading plume with surface waves, and to produce a tomographic image to a depth of 1000 km using body waves. This can be achieved by a continuous deployment of at least  20 months, or by two or three deployments during the spring and summer of consecutive years.  相似文献   
49.
Iceland has been subjected to destructive earthquakes and volcanic eruptions throughout history. Such events are often preceded by changes in earthquake activity over varying timescales. Although most seismicity is confined to micro-earthquakes, large earthquakes have occurred within populated regions. Following the most recent hazardous earthquakes in 2000, the Icelandic Meteorological Office (IMO) developed an early warning and information system (EWIS) Web-site for viewing near-real-time seismicity in Iceland. Here we assess Web-site usage data in relation to earthquake activity, as recorded by the South Iceland Lowland (SIL) seismic network. Between March 2005 and May 2006 the SIL seismic network recorded 12,583 earthquakes. During this period, the EWIS Web-site logged a daily median of 91 visits. The largest onshore event (M L 4.2) struck 20 km from Reykjavík on 06 March 2006 and was followed by an immediate, upsurge in usage resulting in a total of 1,173 unique visits to the Web-site. The greatest cluster of large (≥M L 3) events occurred 300 km offshore from Reykjavík in May 2005. Within this swarm, 9 earthquakes ≥M L 3 were detected on 11 May 2005, resulting in the release of a media bulletin by IMO. During the swarm, and following the media bulletin, the EWIS Web-site logged 1,234 unique visits gradually throughout the day. In summary, the data reveal a spatial and temporal relationship between Web-site usage and earthquake activity. The EWIS Web-site is accessed immediately after the occurrence of a local earthquake, whereas distant, unfelt earthquakes generate gradual interest prompted by media bulletins and, possibly, other contributing factors. We conclude that the Internet is a useful tool for displaying seismic information in near-real-time, which has the capacity to help increase public awareness of natural hazards.  相似文献   
50.
冰岛位于北大西洋北部地区,是对全球气候变化最为敏感的区域之一,对其周边海域古海洋环境的深入研究是全球气候变化研究的重要组成部分。海冰的大面积分布是该地区的显著特点之一,对全球气候系统产生较大的影响意义。此外,冰岛周边海域大量火山灰沉积,也为古海洋环境研究提供了可靠的年代资料。本文以冰岛为中心,回顾了冰岛周边海域末次冰消期以来古海洋环境及海冰研究的现状,探讨了该海域不同记录之间的差异,并通过分析末次冰消期以来古环境研究的不足,提出了相应的展望。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号