首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   487篇
  免费   128篇
  国内免费   394篇
测绘学   22篇
大气科学   544篇
地球物理   40篇
地质学   41篇
海洋学   287篇
天文学   7篇
综合类   39篇
自然地理   29篇
  2024年   9篇
  2023年   7篇
  2022年   18篇
  2021年   21篇
  2020年   26篇
  2019年   37篇
  2018年   31篇
  2017年   31篇
  2016年   27篇
  2015年   32篇
  2014年   39篇
  2013年   50篇
  2012年   56篇
  2011年   43篇
  2010年   42篇
  2009年   47篇
  2008年   44篇
  2007年   42篇
  2006年   48篇
  2005年   41篇
  2004年   33篇
  2003年   25篇
  2002年   29篇
  2001年   41篇
  2000年   50篇
  1999年   29篇
  1998年   29篇
  1997年   13篇
  1996年   17篇
  1995年   9篇
  1994年   6篇
  1993年   20篇
  1992年   6篇
  1991年   8篇
  1990年   1篇
  1989年   2篇
排序方式: 共有1009条查询结果,搜索用时 328 毫秒
81.
印度洋海表温度主模态及其与亚洲夏季季风的关系   总被引:7,自引:0,他引:7  
分析了印度洋SST主模态的时空特征,并探讨其对亚洲夏季季风的影响,结果表明:印度洋SST主模态的主要特征为整个海盆一致的增温趋势,主要具有准3 a和准11 a周期,在1976/1977年和1997/1998年分别具有两次年代际显著增温。印度洋SST主模态与中国雨区夏季降水有很好的关系,其增温趋势与华北、东北南部、华南东部和西南西部降水减少,长江中下游地区、东北北部和西北地区降水增多具有很好的关系,并与长江中下游梅雨雨量具有较好的正相关关系;其变化趋势对亚洲夏季季风系统具有显著影响,在高空,使南亚高压、高原南侧的高空东风以及从南海、东南亚至西南印度洋的高空越赤道气流减弱,但增强10°—20°N、40°—110°E的北风;在中层,使西北太平洋副热带高压强度偏强,面积偏大;在低层,增强索马里越赤道气流,但却削弱印度夏季季风低层环流,并且在加强东亚地区的低层南风在中国长江中下游地区及其以南地区的同时减弱华北地区的低层西南风;地面,使亚洲大陆的气压升高;与对流层整层垂直积分水汽输送通量的相关分布与低层环流的相似。因此,印度洋SST主模态的上升趋势是亚洲夏季季风趋于减弱和中国雨带南移的一个原因。  相似文献   
82.
A numerical modelling study is presented focusing on the effects of mesoscale sea-surface temperature (SST) variability on surface fluxes and the marine atmospheric boundary-layer structure. A basic scenario is examined having two regions of SST anomaly with alternating warm/cold or cold/warm water regions. Conditions upstream from the anomaly region have SST values equal to the ambient atmosphere temperature, creating an upstream neutrally stratified boundary layer. Downstream from the anomaly region the SST is also set to the ambient atmosphere value. When the warm anomaly is upstream from the cold anomaly, the downstream boundary layer exhibits a more complex structure because of convective forcing and mixed layer deepening upstream from the cold anomaly. An internal boundary layer forms over the cold anomaly in this case, generating two distinct layers over the downstream region. When the cold anomaly is upstream from the warm anomaly, mixing over the warm anomaly quickly destroys the shallow cold layer, yielding a more uniform downstream boundary-layer vertical structure compared with the warm-to- cold case. Analysis of the momentum budget indicates that turbulent momentum flux divergence dominates the velocity field tendency, with pressure forcing accounting for only about 20% of the changes in momentum. Parameterization of surface fluxes and boundary-layer structure at these scales would be very difficult because of their dependence on subgrid-scale SST spatial order. Simulations of similar flow over smaller scale fronts (<5 km) suggest that small-scale SST variability might be parameterized in mesoscale models by relating the effective heat flux to the strength of the SST variance.  相似文献   
83.
Impacts of Coastal SST Variability on the East Asian Summer Monsoon   总被引:4,自引:0,他引:4  
The impacts of the seasonal and interannual SST variability in the East Asia coastal regions (EACRSST) on the East Asian summer monsoon (EASM) have been examined using a regional climate model (PδRCM9) in this paper. The simulation results show that the correlation between the EACRSST and the EASM is strengthened after the mid-1970s and also the variability of the EACRSST forcing becomes much more important to the EASM interannual variability after the mid-1970s. The impacts of the EACRSST on the summer precipitation over each sub-region in the EASM region become weak gradually from south to north, and the temporal evolution features of the summer precipitation differences over North and Northeast China agree well with those of the index of EASM (IEASM) differences.
The mechanism analyses show that different EACRSST forcings result in the differences of sensible and latent heat flux exchanges at the air-sea interface, which alter the heating rate of the atmosphere. The heating rate differences induce low level air temperature differences over East Asia, resulting in the differences of the land-sea thermal contrast (LSTC) which lead to 850 hPa geopotential height changes. When the 850 hPa geopotential height increases over the East Asian continent and decreases over the coast of East China and the adjacent oceans during the weakening period of weakens consequently. On the contrary, the EASM enhances during the strengthening period of the LSTC.  相似文献   
84.
Land and Sea Surface Temperatures (LST and SST) are both recognized as Essential Climate Variables, and are routinely retrieved by a wealth of satellites. However, for validated approaches, the latest data are usually not available to the general public. We offer to bridge this gap, by using Meteosat Second Generation (MSG) Spinning Enhanced Visible and InfraRed Imager (SEVIRI), with its 15 min temporal resolution. Here, we present generic algorithms for the retrieval of both LST and SST, valid for the SEVIRI instrument onboard MSG platforms 8–11, which we validate using hourly data of 4 ground stations and 11 buoys in Spain over the years 2015 to 2018. These validations show that in the best conditions of surface homogeneity (cloud-free summer nights), errors in our LST estimation are below 1.5 K for stations with good thermal homogeneity. Comparison with LSA-SAF (Land Surface Analysis - Satellite Application Facility) LST shows differences below 2 K for most of SEVIRI disk, with higher differences in arid areas and during daytime. As for SST retrieval, the average error amount to 0.67 K for cloud-free buoy data. These algorithms have been implemented in a near-real time processing chain, which provide actualized LST and SST maps every 15 min within 5 min of image reception. These maps, along with other products, can be freely consulted from a dedicated webpage (https://www.uv.es/iplsat).  相似文献   
85.
An integrated wavelet concept of physical geodesy   总被引:4,自引:1,他引:3  
For the determination of the earth's gravity field many types of observations are nowadays available, including terrestrial gravimetry, airborne gravimetry, satellite-to-satellite tracking, satellite gradio-metry, etc. The mathematical connection between these observables on the one hand and gravity field and shape of the earth on the other is called the integrated concept of physical geodesy. In this paper harmonic wavelets are introduced by which the gravitational part of the gravity field can be approximated progressively better and better, reflecting an increasing flow of observations. An integrated concept of physical geodesy in terms of harmonic wavelets is presented. Essential tools for approximation are integration formulas relating an integral over an internal sphere to suitable linear combinations of observation functionals, i.e. linear functionals representing the geodetic observables. A scale discrete version of multiresolution is described for approximating the gravitational potential outside and on the earth's surface. Furthermore, an exact fully discrete wavelet approximation is developed for the case of band-limited wavelets. A method for combined global outer harmonic and local harmonic wavelet modelling is proposed corresponding to realistic earth's models. As examples, the role of wavelets is discussed for the classical Stokes problem, the oblique derivative problem, satellite-to-satellite tracking, satellite gravity gradiometry and combined satellite-to-satellite tracking and gradiometry. Received: 28 February 1997 / Accepted: 17 November 1997  相似文献   
86.
用历年北半球500hPa月平均高度场及北太平洋海温资料,运用合成分析,奇异值分解等方法,分析了我国夏季降水型与同期,前期环流及海温场的关系,结果表明我国夏季降水型与大气环流及北太平海之间有密切的关系。  相似文献   
87.
In the context of a model of tropical cyclone intensity based on an improved meso-scaleatmospheric model, numerical simulation is performed of the track and intensity variation oftropical cyclones (TC) arising from sea surface temperature (SST) variation over a specified searegion. Evidence suggests that the model is capable of modeling quite welt the track and intensityof TC: SST variation leads to an abrupt change in the cyclone intensity: the response of thecyclone to the abrupt SST change lasts 8—12 h.  相似文献   
88.
By using the NCAR CCM1 model, we have designed six sensitive experiments, which areincreased and decreased SST (sea surface temperature) by 1℃ each in the SCS (South China Sea)and in the West Pacific warm pool, increased and decreased SST by 1℃ in the warm pool withincreased SST by 1℃ in the SCS. All experiments are integrated from April to July. Comparingwith the control experiment, we have analyzed the anomalies of the wind field at the upper andlower layers, the anomalies of the seasonal variability of the monsoon and precipitation for eachexperiment. In the result, we have found that the SST anomaly (SSTA) in the SCS greatly affectsthe seasonal variability of the SCS monsoon and precipitation in China, especially during the coldperiod of SST in the SCS. The impact of SSTA in the warm pool on SCS monsoon is also found.but is weak as compared to the effect of SST anomaly in the SCS. Besides, its impact on rainfall inChina is uncertain.  相似文献   
89.
于淑秋 《高原气象》1998,17(3):290-299
对长江坝区汛期降水的气候背景进行了分析后指出:坝区汛期降水异常与EAA相关链,特别是东亚这一段遥相关型有明显联系,进而探讨了它与前期北太平洋海水温度的关系。  相似文献   
90.
It is well established that sea surface temperature (SST) plays a significant role in the hydrologic cycle in which precipitation is the most important part. In this study, the influence of SST on Indian subdivisional monthly rainfall is investigated. Both spatial and temporal influences are investigated. The most influencing regions of sea surface are identified for different subdivisions and for different overlapping seasons in the year. The relative importance of SST, land surface temperature (LST) and ocean–land temperature contrast (OLTC) and their variation from subdivision to subdivision and from season to season are also studied. It is observed that LST does not show much similarity with rainfall series, but, in general, OLTC shows relatively higher influence in the pre‐monsoon and early monsoon periods, whereas SST plays a more important role in late‐ and post‐monsoon periods. The influence of OLTC is seen to be mostly confined to the Indian Ocean region, whereas the effect of SST indicates the climatic teleconnection between Indian regional rainfall and climate indices in Pacific and Atlantic Oceans. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号