首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2283篇
  免费   502篇
  国内免费   337篇
测绘学   69篇
大气科学   251篇
地球物理   768篇
地质学   1084篇
海洋学   485篇
天文学   15篇
综合类   76篇
自然地理   374篇
  2024年   9篇
  2023年   32篇
  2022年   63篇
  2021年   118篇
  2020年   101篇
  2019年   100篇
  2018年   86篇
  2017年   105篇
  2016年   93篇
  2015年   102篇
  2014年   146篇
  2013年   159篇
  2012年   128篇
  2011年   158篇
  2010年   133篇
  2009年   140篇
  2008年   137篇
  2007年   145篇
  2006年   115篇
  2005年   117篇
  2004年   120篇
  2003年   118篇
  2002年   88篇
  2001年   81篇
  2000年   71篇
  1999年   72篇
  1998年   69篇
  1997年   52篇
  1996年   54篇
  1995年   35篇
  1994年   28篇
  1993年   29篇
  1992年   26篇
  1991年   15篇
  1990年   21篇
  1989年   22篇
  1988年   9篇
  1987年   3篇
  1986年   6篇
  1985年   5篇
  1984年   1篇
  1983年   3篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1977年   2篇
  1976年   1篇
排序方式: 共有3122条查询结果,搜索用时 171 毫秒
81.
Dams are a major source of fragmentation and degradation of rivers. Although substantial research has been conducted on the environmental impacts of large structures in the United States, smaller dams have received less attention. This study evaluated the impact of two dams of moderate size, the Elwha Dams, on the downstream channel system using field data collection at river cross‐sections. The relationship of average boundary shear stress (τo) to critical shear stress (τcr) served as the basis for determining channel bed material mobility under the two‐year and ten‐year flood events. The channel had the greatest channel bed mobility at the natural cross‐section upstream from the dams, low bed mobility between the structures, and an increase in channel bed mobility in the low gradient river segment near the mouth of the river. Low bed mobility tended to be associated with a lack of channel system complexity, including reduction or loss of bars and low alluvial terraces and their associated young riparian communities. Although these run‐of‐the‐river dams do not modify streamflow greatly, the loss of sediment from the channel system has had a substantial impact on bed mobility and geomorphic and biotic complexity of the Elwha River.  相似文献   
82.
Pb pollution has existed for several millennia and remains relevant today. By using peat cores as environmental archives it is possible to reconstruct this long history on a regional scale. This is a significant contribution to the findings from ice core records, the only other archive recording purely atmospheric additions. Without information that allows linking and comparison between sites regionally, within Europe and elsewhere, our ability to make coherent global models of the natural Pb cycle, and anthropogenic forcing of this cycle, is limited. In this respect, the characteristics of the Pb pre-pollution aerosol (PPA) are important to define globally. We characterize for the first time a PPA in Southern Europe with [Pb] = 0.78 ± 0.86 μg g− 1, net Pb accumulation rates of 0.032 ± 0.030 mg m− 2 y− 1 and a 206Pb / 207Pb signature of 1.25470 ± 0.02575. This PPA Pb isotope signature is more radiogenic than that found thus far in Western and Northern Europe. Spain is a historically important mining site. Using three-isotope plots and a pool of potential Pb isotope signatures, a detailed source appointment of both natural and anthropogenic Pb sources was made. We found evidence of Saharan aridification and its termination ∼4400 BP and/or agricultural signals and strong local control (from rock and soil) of the Pb PPA. Human impact is first recorded at 3210 BP but does not exceed 50% of deposited Pb until 3005 BP. Mines in SE Spain dominate early Pb pollution history at this site. During the rise of Roman rule, contributions come from mines in N, NW and SW Spain with no strong indication of other European mining activities. In Medieval and Industrial times local contributions to the peat bog are reduced.  相似文献   
83.
A model to simulate channel changes in ephemeral river channels and to test the effects of hydrological changes due to climate change and[sol ]or land use change was developed under the auspices of the EU funded MEDALUS programme (Mediterranean Desertification and Land Use). The model, CHANGISM (Channel Change GIS Simulation Model), is designed to simulate the effect of channel flow events and of climate conditions on morphology, sediment and vegetation, through sequences of events and conditions, over periods of up to several decades. The modelling is based on cellular automata but with calculations for water and sediment continuity. Process rules have both deterministic and stochastic elements. An important feature of the model is that it incorporates feedback elements between each event. The main aim of the model is to indicate the likely outcomes of events and combinations of conditions. It is linked to GIS for both input and output. The modelling is based on a channel reach and state is input as GIS layers of morphology (DEM), sediment and vegetation cover and state. Other initial conditions of soil moisture, groundwater level, and overall gradient are input. Parameters for processes are read from tables and can be easily changed for successive runs of the model. The bases for decisions on process specifications are discussed in this paper. Initial tests of the operation and sensitivity of the model were made on idealized reaches. The model was then tested using data from monitored sites in SE Spain. Simulations using clearwater flow worked well but initial simulations using events with sediment loads showed some tendency for excess deposition. Further tests and modifications are taking place. Overall, the model is one of the most sophisticated that simulates the interaction of flows with sediment and vegetation and the outcomes in terms of erosion, deposition, morphology, sediment cover, vegetation cover and plant survival over periods of up to 30 years for the scale of a channel reach. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
84.
Channel cross‐sectional changes since construction of Livingston Dam and Lake Livingston in 1968 were studied in the lower Trinity River, Texas, to test theoretical models of channel adjustment, and to determine controls on the spatial extent of channel response. High and average flows were not significantly modified by the dam, but sediment transport is greatly reduced. The study is treated as an opportunistic experiment to examine the effects of a reduction in sediment supply when discharge regime is unchanged. Channel scour is evident for about 60 km downstream, and the general phenomena of incision, widening, coarsening of channel sediment and a decrease in channel slope are successfully predicted, in a qualitative sense, by standard models of channel response. However, there is no consistent channel response within this reach, as various qualitatively different combinations of increases, decreases or no change in width, depth, slope and roughness occur. These multiple modes of adjustment are predicted by the unstable hydraulic geometry model. Between about 60 km and the Trinity delta 175 km downstream of the dam, no morphological response to the dam is observed. Rather than a diminution of the dam's effects on fluvial processes, this is due to a fundamental change in controls of the fluvial system. The downstream end of the scour zone corresponds to the upstream extent of channel response to Holocene sea level rise. Beyond 60 km downstream, the Trinity River is characterized by extensive sediment storage and reduced conveyance capacity, so that even after dam construction sediment supply still exceeds transport capacity. The channel bed of much of this reach is near or below sea level, so that sea level rise and backwater effects from the estuary are more important controls on the fluvial system than upstream inputs. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
85.
Abstract: The February 2004 Manawatu floods in New Zealand were the result of a naturally occurring, although unusual, storm. Up to 300 mm of rain fell on the already saturated ground of the lower North Island over two days, generating substantial and rapid runoff from catchment slopes. Rivers rose quickly, inundating unprotected farmland and properties and in places breaching stopbanks. There was widespread slope failure in the hill country of the lower North Island, affecting an area of ca. 7500 km2. Slopes under scrub, plantation forest and native bush were not as badly affected as those under pasture, where slopes typically failed by shallow translational landsliding. Flooding caused catastrophic channel change in a number of small to medium sized channel systems in the upland fringes. Whilst the occurrence of landsliding and channel changes during an extreme event such as this is natural, the intensity of both landsliding and channel erosion was exacerbated by human activity within the catchments.  相似文献   
86.
This paper explores how, and to what extent, a phase of relief-rejuvenation modifies the mode of surface erosion in an approximately 63 km2 drainage basin located at the northern border of the Swiss Alps (Luzern area). In the study area, the retreat of the Alpine glaciers at the end of the Last Glacial Maximum (LGM) caused base level to lower by approximately 80 m. The fluvial system adapted to the lowered base level by headward erosion. This is indicated by knickzones in the longitudinal stream profiles and by the continuous upstream narrowing of the width of the valley floor towards these knickzones. In the headwaters above these knickzones, processes are still to a significant extent controlled by the higher base level of the LGM. There, frequent exposure of bedrock in channels and especially on hillslopes implies that sediment flux is to a large extent limited by weathering rates. In the knickzones, however, exposure of bedrock in channels implies that sediment flux is supply-limited, and that erosion rates are controlled by stream power.The morphometric analysis reveals the existence of length scales in the topography that result from distinct geomorphic processes. Along the tributaries where the upstream sizes of the drainage basins exceed 100,000–200,000 m2, the mode of sediment transport and erosion changes from predominantly hillslope processes (i.e., landsliding, creep of regolith, rock avalanches and to some extent debris flows) to processes in channels (fluvial processes and debris flows). This length scale reflects the minimum size of the contributing area for channelized processes to take over in the geomorphic development (i.e., threshold size of drainage basin). This threshold size depends on the ratio between production rates of sediment on hillslopes, and export rates of sediment by processes in channels. Consequently, in the headwaters, erosion rates and sediment flux, and hence landscape evolution rates, are to a large extent limited by weathering processes. In contrast, in the lower portion of the drainage basin that adjusts to the lowered base-level, rates of channelized erosion and relief formation are controlled mainly by stream power. Hence, this paper shows that base-level lowering, headward erosion and establishment of knickzones separate drainage basins in two segments with different controls on rates of surface erosion, sediment flux and relief formation.  相似文献   
87.
INTRODUCTION Volcanoesaremostlyobservedinoceanicridges,hotspotsandcontinentalriftzones(Hongetal.,2003),andarerarelyobservedincontinentalinteri ors.However,sincethevolcanoeswithintheconti nentinteriorscannotbeattributedtotheplate/block marginprocess,theydr…  相似文献   
88.
Habitat fragmentation in channel networks and riverine ecosystems is increasing globally due to the construction of barriers and river regulation. The resulting divergence from the natural state poses a threat to ecosystem integrity. Consequently, a trade‐off is required between the conservation of biodiversity in channel networks and socio‐economic factors including power generation, potable water supplies, fisheries, and tourism. Many of Scotland's rivers are regulated for hydropower generation but also support populations of Atlantic salmon (Salmo salar L.) that have high economic and conservation value. This paper investigates the use of connectivity metrics and weightings to assess the impact of river barriers (impoundments) associated with hydropower regulation on natural longitudinal channel connectivity for Atlantic salmon. We applied 2 different weighting approaches in the connectivity models that accounted for spatial variability in habitat quality for spawning and fry production and contrasted these models with a more traditional approach using wetted area. Assessments of habitat loss using the habitat quality weighted models contrasted with those using the less biologically relevant wetted area. This highlights the importance of including relevant ecological and hydrogeomorphic information in assessing regulation impacts on natural channel connectivity. Specifically, we highlight scenarios where losing a smaller area of productive habitat can have a larger impact on Atlantic salmon than losing a greater area of less suitable habitat. It is recommended that future channel connectivity assessments should attempt to include biologically relevant weightings, rather than relying on simpler metrics like wetted area which can produce misleading assessments of barrier impacts.  相似文献   
89.
Developing an appropriate data collection scheme to infer stream–subsurface interactions is not trivial due to the spatial and temporal variability of exchange flowpaths. Within the context of a case study, this paper presents the results from a number of common data collection techniques ranging from point to reach scales used in combination to better understand the spatial complexity of subsurface exchanges, infer the hydrologic conditions where individual influences of hyporheic and groundwater exchange components on stream water can be characterized, and determine where gaps in information arise. We start with a tracer‐based, longitudinal channel water balance to quantify hydrologic gains and losses at a sub‐reach scale nested within two consecutive reaches. Next, we look at groundwater and stream water surface levels, shallow streambed vertical head gradients, streambed and aquifer hydraulic conductivities, water chemistry, and vertical flux rates estimated from streambed temperatures to provide more spatially explicit information. As a result, a clearer spatial understanding of gains and losses was provided, but some limitations in interpreting results were identified even when combining information collected over various scales. Due to spatial variability of exchanges and areas of mixing, each technique frequently captured a combination of groundwater and hyporheic exchange components. Ultimately, this study provides information regarding technique selection, emphasizes that care must be taken when interpreting results, and identifies the need to apply or develop more advanced methods for understanding subsurface exchanges. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
90.
To investigate the sources of particulate organic matter (POM) and the impact of Three Gorges Dam (TGD), two large lakes and erosion processes on determining the composition and flux of POM in low water discharge periods along the middle and lower Changjiang, suspended particulate samples were collected along the middle and lower reaches of the Changjiang (Yangtze River) in January 2008. Organic geochemistry of bulk sediment (particulate organic carbon, organic carbon to nitrogen molar ratio (C/N), stable carbon isotope (δ13C) and grain size) and biomarker of bulk sediment (lignin phenols) were measured to trace the sources of POM. The range of C/N ratios (6.4–8.9), δ13C (?24.3‰ – ?26.2‰) and lignin phenols concentration Λ8 (0.45 mg/100 mg OC‐2.00 mg/100 mg OC) of POM suggested that POM originated from the mixture of soil, plant tissue and autochthonous organic matter (OM) during the dry season. POM from lakes contained a higher portion of terrestrial OM than the mainstream, which was related to sand mining and hydropower erosion processes. A three end‐member model based on δ13C and Λ8 was performed. The results indicated that soil contributed approximately 50% of OM to the POM, which is the dominant OM source in most stations. POM composition was affected by total suspended matter (TSM) and grain size composition, and the direct OM input from two lakes and channel erosion induced OM. The lower TSM concentration in January 2008 was mainly caused by seasonal variations; the impact from the TGD in the dry season was relatively small. A box model indicated that more than 90% of the terrestrial OM transported by the Changjiang in January 2008 was from the middle and lower drainage basins. Channel erosion induced OM, and contributions from Poyang Lake were the major terrestrial OM sources in the dry season. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号