首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6721篇
  免费   1302篇
  国内免费   1071篇
测绘学   125篇
大气科学   604篇
地球物理   2514篇
地质学   3555篇
海洋学   837篇
天文学   49篇
综合类   285篇
自然地理   1125篇
  2024年   19篇
  2023年   69篇
  2022年   155篇
  2021年   235篇
  2020年   265篇
  2019年   272篇
  2018年   251篇
  2017年   275篇
  2016年   261篇
  2015年   268篇
  2014年   399篇
  2013年   542篇
  2012年   329篇
  2011年   396篇
  2010年   362篇
  2009年   438篇
  2008年   513篇
  2007年   428篇
  2006年   459篇
  2005年   338篇
  2004年   319篇
  2003年   292篇
  2002年   268篇
  2001年   243篇
  2000年   222篇
  1999年   227篇
  1998年   192篇
  1997年   171篇
  1996年   144篇
  1995年   119篇
  1994年   104篇
  1993年   107篇
  1992年   88篇
  1991年   69篇
  1990年   68篇
  1989年   44篇
  1988年   42篇
  1987年   18篇
  1986年   14篇
  1985年   11篇
  1984年   9篇
  1983年   6篇
  1982年   5篇
  1981年   5篇
  1980年   7篇
  1978年   16篇
  1977年   5篇
  1976年   1篇
  1972年   1篇
  1954年   3篇
排序方式: 共有9094条查询结果,搜索用时 500 毫秒
981.
为了探究泥石流的堆积范围,利用LAHARZ软件,对北京市密云县泥石流沟喇嘛栅子南沟进行了数值模拟。结合泥石流沟小流域1:10 000数字高程模型图,模拟了泥石流的堆积范围。首先利用中国部分地区泥石流体积和堆积范围的数据资料,获得了泥石流体体积与其堆积范围的新的统计模型B=11.42V0.7156;然后通过模拟沟道与实际沟道的对比,确定了最佳沟道阈值为15 000;再结合现场调查统计和降雨历史资料,确定了10年、20年、50年和100年一遇暴雨条件的泥石流体积值,分别为56 500、72 900、94 200和113 100 m3;最后在此基础上对该条泥石流沟的堆积范围进行了预测。结果表明,100年一遇的暴雨条件下泥石流堆积面积为48 729 m2,到达最远距离约为490 m,已影响下游村庄。  相似文献   
982.
甘肃省河西内陆河流量长期变化特征   总被引:11,自引:2,他引:9  
利用甘肃省河西地区3条主要内陆河石羊河、黑河、疏勒河40余年的流量资料以及河西走廊地区和祁连山区气象资料对河西地区内陆河流量的长期变化特征进行了分析,并对所获结果进行了讨论,得到一些有意义的结论.  相似文献   
983.
北极地区楚克奇海域一次强逆温过程的分析   总被引:8,自引:6,他引:2  
利用中国首次北极科学考察期间所获得的大气边界层资料,分析了楚克奇海域夏季一次强逆温过程.考察期间楚克奇海域上空的大气逆温强度(6.3℃/100 m)远远超过了北极地区夏季的气候平均值(0.5℃/100 m),该大气逆温存在明显的日变化,逆温强度自当地时间00时到18时逐步减弱.考察期间同样存在强大的逆湿结构,逆湿层内最大湿度差为6.4 g m-3.稳定边界层内大气向地面输送感热通量和潜热通量,输送最大值出现在夜间.研究同时段的大气环流资料后表明,考察区域西南的暖湿气流及其变化是造成此次夏季强逆温及其日变化的主要原因.  相似文献   
984.
讨论了非饱和土壤水流问题及其数值计算方案的极值原理,在理论上证明了连续问题及其数值格式均满足极值原理,即在一定的条件下,预报变量的最大值和最小值只能在边界上达到,从而描述了特定的物理性质.这些问题在讨论入渗、蒸发问题的研究中是重要的.  相似文献   
985.
Water flow velocity is an important hydraulic variable in hydrological and soil erosion models, and is greatly affected by freezing and thawing of the surface soil layer in cold high-altitude regions. The accurate measurement of rill flow velocity when impacted by the thawing process is critical to simulate runoff and sediment transport processes. In this study, an electrolyte tracer modelling method was used to measure rill flow velocity along a meadow soil slope at different thaw depths under simulated rainfall. Rill flow velocity was measured using four thawed soil depths (0, 1, 2 and 10 cm), four slope gradients (5°, 10°, 15° and 20°) and four rainfall intensities (30, 60, 90 and 120 mm·h−1). The results showed that the increase in thawed soil depth caused a decrease in rill flow velocity, whereby the rate of this decrease was also diminishing. Whilst the rill flow velocity was positively correlated with slope gradient and rainfall intensity, the response of rill flow velocity to these influencing factors varied with thawed soil depth. The mechanism by which thawed soil depth influenced rill flow velocity was attributed to the consumption of runoff energy, slope surface roughness, and the headcut effect. Rill flow velocity was modelled by thawed soil depth, slope gradient and rainfall intensity using an empirical function. This function predicted values that were in good agreement with the measured data. These results provide the foundation for a better understanding of the effect of thawed soil depth on slope hydrology, erosion and the parameterization scheme for hydrological and soil erosion models.  相似文献   
986.
Abstract

Large debris flows in steep-sloped ravines debouching to the Rimac River, in metropolitan Lima (Peruvian capital), have resulted in considerable loss of life and property adversely impacting communities in the region. Temporal, spatial and volumetric features of debris flows are difficult to predict, and it is of utmost importance that achievable management solutions are found to reduce the impact of these catastrophic events. The emotional and economic toll of these debris flows on this increasingly densely populated capital city in South America is devastating where communities must live in such inadequate and dangerous conditions. To address this problem, the application of advanced Japanese technology, Sustainable Actions Basin Orientation (SABO), has been investigated using a geomorphological modelling to develop an implementation plan. Rayos de Sol stream basin in Chosica, was selected as a pilot to develop the proposal, as it is considered high risk due to the presence of ancient debris flows and recent flows in 2012, 2015 and 2017. The recurrence of debris flows in this location has resulted in numerous deaths and catastrophic property losses. This study combines geologic and geomorphic mapping and hydraulic and landform evolution numerical modelling. The implementation of a SABO Master Plan based on the multidisciplinary assessment hazard scenarios, will allow the implementation of feasible mitigation actions. The SABO technology has been applied successfully in Japan and other countries in areas with steep short slopes, similar to the conditions surrounding the Peruvian capital. Results from this study will be presented to the Peruvian Government as part of an action plan to manage debris-flow impact.
  1. KEY POINTS
  2. High-risk mass slope failure is linked to poor urban planning in urban developing regions of Lima the capital of Peru.

  3. A multidisciplinary study including geotechnical and hydrological analysis, engineering design, and socio-economic research is required to implement a SABO Master Plan, and this basin is pilot study basin.

  4. At the present time, a maintenance programme for existing hydraulic structures should be implemented, and a flood risk management plan developed may propose the relocation of some communities and infrastructure.

  相似文献   
987.
ABSTRACT

The spatio-temporal residual network (ST-ResNet) leverages the power of deep learning (DL) for predicting the volume of citywide spatio-temporal flows. However, this model, neglects the dynamic dependency of the input flows in the temporal dimension, which affects what spatio-temporal features may be captured in the result. This study introduces a long short-term memory (LSTM) neural network into the ST-ResNet to form a hybrid integrated-DL model to predict the volumes of citywide spatio-temporal flows (called HIDLST). The new model can dynamically learn the temporal dependency among flows via the feedback connection in the LSTM to improve accurate captures of spatio-temporal features in the flows. We test the HIDLST model by predicting the volumes of citywide taxi flows in Beijing, China. We tune the hyperparameters of the HIDLST model to optimize the prediction accuracy. A comparative study shows that the proposed model consistently outperforms ST-ResNet and several other typical DL-based models on prediction accuracy. Furthermore, we discuss the distribution of prediction errors and the contributions of the different spatio-temporal patterns.  相似文献   
988.
High‐strain zones are potential pathways of melt migration through the crust. However, the identification of melt‐present high‐strain deformation is commonly limited to cases where the interpreted volume of melt “frozen” within the high‐strain zone is high (>10%). In this contribution, we examine high‐strain zones in the Pembroke Granulite, an otherwise low‐strain outcrop of volcanic arc lower crust exposed in Fiordland, New Zealand. These high‐strain zones display compositional layering, flaser‐shaped mineral grains, and closely spaced foliation planes indicative of high‐strain deformation. Asymmetric leucosome surrounding peritectic garnet grains suggest deformation was synchronous with minor amounts of in situ partial melting. High‐strain zones lack typical mylonite microstructures and instead display typical equilibrium microstructures, such as straight grain boundaries, 120° triple junctions, and subhedral grain shapes. We identify five key microstructures indicative of the former presence of melt within the high‐strain zones: (a) small dihedral angles of interstitial phases; (b) elongate interstitial grains; (c) small aggregates of quartz grains with xenomorphic plagioclase grains connected in three dimensions; (d) fine‐grained, K‐feldspar bearing, multiphase aggregates with or without augite rims; and (e) mm‐ to cm‐scale felsic dykelets. Preservation of key microstructures indicates that deformation ceased as conditions crossed the solidus, breaking the positive feedback loop between deformation and the presence of melt. We propose that microstructures indicative of the former presence of melt, such as the five identified above, may be used as a tool for recognising rocks formed during melt‐present high‐strain deformation where low (<5%) volumes of leucosome are “frozen” within the high‐strain zone.  相似文献   
989.
In this paper, a recently deduced flow resistance equation for open channel flow was tested under equilibrium bed‐load transport conditions in a rill. First, the flow resistance equation was deduced applying dimensional analysis and the incomplete self‐similarity condition for the flow velocity distribution. Then, the following steps were carried out for developing the analysis: (a) a relationship (Equation  13 ) between the Γ function of the velocity profile, the rill slope, and the Froude number was calibrated by the available measurements by Jiang et al.; (b) a relationship (Equation  17 ) between the Γ function, the rill slope, the Shields number, and the Froude number was calibrated by the same measurements; and (c) the Darcy–Weisbach friction factor values measured by Jiang et al. were compared with those calculated by the rill flow resistance equation with Γ estimated by Equations  13 and 17 . This last comparison demonstrated that the rill flow resistance equation, in which slope and Shields number, representative of sediment transport effects, are introduced, is characterized by the lowest values of the estimate errors.  相似文献   
990.
Infiltration into frozen soil plays an important role in soil freeze–thaw and snowmelt-driven hydrological processes. To better understand the complex thermal energy and water transport mechanisms involved, the influence of antecedent moisture content and macroporosity on infiltration into frozen soil was investigated. Ponded infiltration experiments on frozen macroporous and non-macroporous soil columns revealed that dry macroporous soil produced infiltration rates reaching 103 to 104 mm day−1, two to three orders of magnitude larger than dry non-macroporous soil. Results suggest that rapid infiltration and drainage were a result of preferential flow through initially air-filled macropores. Using recorded flow rates and measured macropore characteristics, calculations indicated that a combination of both saturated flow and unsaturated film flow likely occurred within macropores. Under wet conditions, regardless of the presence of macropores, infiltration was restricted by the slow thawing rate of pore ice, producing infiltration rates of 2.8 to 5.0 mm day−1. Reduced preferential flow under wet conditions was attributed to a combination of soil swelling, due to smectite-rich clay (that reduced macropore volume), and pore ice blockage within macropores. In comparison, dry soil column experiments demonstrated that macropores provided conduits for water and thermal energy to bypass the frozen matrix during infiltration, reducing thaw rates compared with non-macroporous soils. Overall, results showed the dominant control of antecedent moisture content on the initiation, timing, and magnitude of infiltration and flow in frozen macroporous soils, as well as the important role of macropore connectivity. The study provides an important data set that can aid the development of hydrological models that consider the interacting effects of soil freeze–thaw and preferential flow on snowmelt partitioning in cold regions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号