首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4363篇
  免费   686篇
  国内免费   225篇
测绘学   147篇
大气科学   301篇
地球物理   2100篇
地质学   1529篇
海洋学   362篇
天文学   31篇
综合类   56篇
自然地理   748篇
  2024年   17篇
  2023年   27篇
  2022年   46篇
  2021年   130篇
  2020年   233篇
  2019年   167篇
  2018年   183篇
  2017年   231篇
  2016年   208篇
  2015年   189篇
  2014年   219篇
  2013年   527篇
  2012年   134篇
  2011年   165篇
  2010年   149篇
  2009年   207篇
  2008年   274篇
  2007年   248篇
  2006年   244篇
  2005年   225篇
  2004年   192篇
  2003年   146篇
  2002年   125篇
  2001年   121篇
  2000年   117篇
  1999年   117篇
  1998年   108篇
  1997年   111篇
  1996年   78篇
  1995年   71篇
  1994年   51篇
  1993年   56篇
  1992年   32篇
  1991年   25篇
  1990年   25篇
  1989年   20篇
  1988年   21篇
  1987年   8篇
  1986年   11篇
  1985年   4篇
  1984年   2篇
  1982年   4篇
  1981年   2篇
  1980年   2篇
  1954年   2篇
排序方式: 共有5274条查询结果,搜索用时 15 毫秒
41.
A sensitivity analysis of the waterline method of constructing a Digital Elevation Model (DEM) of an intertidal zone using remote sensing and hydrodynamic modelling is described. Variation in vertical height accuracy as a function of beach slope is investigated using a set of nine ERS Synthetic Aperture Radar (SAR) images of the Humber/Wash area on the English east coast acquired between 1992 and 1994. Waterlines from these images are heighted using a hydrodynamic tide-surge model and interpolated using block kriging. On 1:500 slope beaches, an average block height estimation standard deviation of 18–22 cm is achieved. This rises to 27 cm on 1:100 slope beaches, and 32 cm on 1:30 slope beaches. The average heighting error at different slopes is decomposed into components due to waterline heighting error, inadequate sensor resolution and interpolation inaccuracy. It is shown that, at 1:500 slope, waterline heighting error and interpolation inaccuracy are the main error sources, whilst at 1:30 slope, errors due to inadequate sensor resolution become dominant. The ability of the technique to generate intertidal DEMs for almost the entire coastal zone in a complete ERS SAR scene covering 100×100 km is demonstrated.  相似文献   
42.
This paper investigates the use of data assimilation in coastal area morphodynamic modelling using Morecambe Bay as a study site. A simple model of the bay has been enhanced with a data assimilation scheme to better predict large-scale changes in bathymetry observed in the bay over a 3-year period. The 2DH decoupled morphodynamic model developed for the work is described, as is the optimal interpolation scheme used to assimilate waterline observations into the model run. Each waterline was acquired from a SAR satellite image and is essentially a contour of the bathymetry at some level within the inter-tidal zone of the bay. For model parameters calibrated against validation observations, model performance is good, even without data assimilation. However the use of data assimilation successfully compensates for a particular failing of the model, and helps to keep the model bathymetry on track. It also improves the ability of the model to predict future bathymetry. Although the benefits of data assimilation are demonstrated using waterline observations, any observations of morphology could potentially be used. These results suggest that data assimilation should be considered for use in future coastal area morphodynamic models.  相似文献   
43.
The mixing agents and their role in the dynamics of a shallow fjord are elucidated through an Eulerian implementation of artificial tracers in a three-dimensional hydrodynamic model. The time scales of vertical mixing in this shallow estuary are short, and the artificial tracers are utilized in order to reveal information not detectable in the temperature or salinity fields. The fjord's response to external forcing is investigated through a series of model experiments in which we quantify vertical mixing, transport time scales of fresh water runoff and estuarine circulation in relation to external forcing.Using age tracers released at surface and bottom, we quantify the time scales of downward mixing of surface water and upward mixing of bottom water. Wind is shown to be the major agent for vertical mixing at nearly all depth levels in the fjord, whereas the tide or external sea level forcing is a minor agent and only occasionally more important just close to the bottom. The time scale of vertical mixing of surface water to the bottom or ventilation time scale of bottom water is estimated to be in the range 0.7 h to 9.0 days, with an average age of 2.7 days for the year 2004.The fjord receives fresh water from two streams entering the innermost part of the fjord, and the distribution and age of this water are studied using both ageing and conservative tracers. The salinity variations outside this fjord are large, and in contrast to the salinity, the artificial tracers provide a straight forward analysis of river water content. The ageing tracer is used to estimate transport time scales of river water (i.e. the time elapsed since the water left the river mouth). In May 2004, the typical age of river water leaving the fjord mouth is 5 days. As the major vertical mixing agent is wind, it controls the estuarine circulation and export of river water. When the wind stress is set to zero, the vertical mixing is reduced and the vertical salinity stratification is increased, and the river water can be effectively exported out of the fjord.We also analyse the river tracer fields and salinity field in relation to along estuary winds in order to detect signs of wind-induced straining of the along estuary density gradient. We find that events of down estuary winds are primarily associated with a reduced along estuary salinity gradient due to increased surface salinity in the innermost part of the fjord, and with an overall decrease in vertical stratification and river water content at the surface. Thus, our results show no apparent signs of wind-induced straining in this shallow fjord but instead they indicate increased levels of vertical mixing or upwelling during down estuary wind events.  相似文献   
44.
45.
A seamount chain with an approximately WNW trend is observed in the northeastern Ulleung Basin. It has been argued that these seamounts, including two islands called Ulleung and Dok islands, were formed by a hotspot process or by ridge related volcanism. Many geological and geophysical studies have been done for all the seamounts and islands in the chain except Anyongbok Seamount, which is close to the proposed spreading ridge. We first report morphological characteristics, sediment distribution patterns, and the crustal thickness of Anyongbok Seamount using multibeam bathymetry data, seismic reflection profiles, and 3D gravity modeling. The morphology of Anyongbok Seamount shows a cone shaped feature and is characterized by the development of many flank cones and flank rift zones. The estimated surface volume is about 60 km3, and implies that the seamount is smaller than the other seamounts in the chain. No sediments have been observed on the seamount except the lower slope, which is covered by more than 1,000 m of strata. The crustal structure obtained from a 3D gravity modeling (GFR = 3.11, SD 3.82 = mGal) suggests that the seamount was formed around the boundary of the Ulleung Plateau and the Ulleung Basin, and the estimated crustal thickness is about 20 km, which is a little thicker than other nearby seamounts distributed along the northeastern boundary of the Ulleung Basin. This significant crustal thickness also implies that Anyongbok Seamount might not be related to ridge volcanism.  相似文献   
46.
47.
48.
The role of the hydrological regime in the nutrients and zooplankton composition and dynamics has been analysed in five lagoons of La Pletera salt marshes (NE Iberian Peninsula) during a complete hydrological cycle (2002–2003). Two of the lagoons have their origin in the old river mouths while the other three were recently created in the framework of a Life Restoration project. This fact has also allowed us to study the effect of the lagoon age on nutrient and zooplankton composition and dynamics. The salt marsh hydrology is determined by a prolonged period of confinement without water inputs, irregularly interrupted by sudden water inputs due to flooding events (sea storms or intense rainfalls). While the dynamics of oxidized nitrogen compounds in the lagoons depends on the water inputs variability within each hydrological cycle, the internal load of phosphorus, total nitrogen and organic matter is related more to the cumulative mechanisms during the confinement periods. Accumulation processes may be easily related to lagoon age, since old lagoons have higher content of nutrients and organic matter, suggesting that these lagoons progressively accumulate nutrients during the successive confinement events. This is the usual case for most Mediterranean salt marshes without an artificially manipulated water regime. The zooplankton community in La Pletera integrates the effects of both the hydrological regime and the lagoon age since the former determines the temporal pattern of the main zooplankton species and the latter explains differences in composition and structure between old and new lagoons.  相似文献   
49.
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号