首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   537篇
  免费   82篇
  国内免费   83篇
测绘学   35篇
大气科学   51篇
地球物理   174篇
地质学   123篇
海洋学   97篇
综合类   30篇
自然地理   192篇
  2023年   6篇
  2022年   14篇
  2021年   12篇
  2020年   23篇
  2019年   31篇
  2018年   13篇
  2017年   28篇
  2016年   27篇
  2015年   27篇
  2014年   36篇
  2013年   34篇
  2012年   37篇
  2011年   41篇
  2010年   32篇
  2009年   49篇
  2008年   37篇
  2007年   42篇
  2006年   39篇
  2005年   26篇
  2004年   23篇
  2003年   16篇
  2002年   13篇
  2001年   18篇
  2000年   7篇
  1999年   13篇
  1998年   10篇
  1997年   10篇
  1996年   11篇
  1995年   4篇
  1994年   3篇
  1993年   6篇
  1992年   2篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
排序方式: 共有702条查询结果,搜索用时 15 毫秒
61.
Mean growing season soil PCO2 data were obtained for 19 regions of the world in nine countries. Bivariate and multiple linear regression analysis with soil log(PCO2) as the dependent variable and TEMP, PRECIP, log(AET), and log(PET) as the four climatic independent variables demonstrated that AET was the best independent predictor of soil PCO2. An improved soil PCO2-AET model was developed by assuming (1) that as AET approaches zero, soil PCO2 approaches the atmospheric value and (2) that there is an upper limit to soil PCO2 at very high AET. This model has the form log(PCO2) = ?3·47 + 2·09 (1 ?e?0·0172 AET) where AET is in mm. It explains 67 per cent of the initial variation in the soil PCO2 data, predicts a soil log(PCO2) of ? 3·47 at AET = 0, and an upper limit of 3·5 per cent (log(PCO2) = ? 1·45) for mean growing season soil PCO2 at AET values of 2000 mm and above. The results of this study suggest that soil PCO2 levels in tropical areas are, on average, higher than those in temperate, alpine, and arctic regions.  相似文献   
62.
云南白水台钙华水池中水化学日变化及其生物控制的发现   总被引:11,自引:0,他引:11  
为弄清云南白水台泉及其下游钙华水池中水化学的日变化,选取1号泉及其流经的两个钙华水池(6号和10号)作为研究对象并对其水温、pH值和电导率进行了自动监测。根据Ca2 、HCO3-与电导率存在的线性关系,用WATSPAC软件计算了水中方解石的饱和指数和PCO2。监测发现:泉水不存在显著的水化学日动态变化,而两个钙华水池表现出显著的日动态变化。其中10号钙华水池在白天温度较高时水中的CO2大量逸出并通过水下水生植物的光合作用加速了水中碳酸钙的沉积。6号钙华水池水生植物生长茂盛,其叶片和部分枝干露出水面,因而光合作用主要发生在空中,所以此处水化学表现为白天pH值降低和电导率升高的反常现象,即由温度主导的根呼吸作用,在白天释放更多的CO2进入水体而使沉积下来的碳酸钙重新溶解。  相似文献   
63.
Above and belowground phenology are critical aspects for plant life in areas of seasonal climate like Mediterranean regions. However, fine root growth phenology is rarely considered in most phenological studies. In this article we describe the above and belowground phenology of four species of Mediterranean sub-shrubs growing along a gradient of temperature and water availability, with special attention at the relationship between both processes. Observations were conducted monthly over a minimum of 12 months per species. Fine root growth varied significantly throughout the year, being higher in autumn than in spring and minimum in summer. In the species growing in cold areas, root growth was also reduced during winter. Shoot growth was maximum in spring for the four study species, buts its beginning was related to the site temperature, being earlier in those species growing in warmer sites. The species displaying a short vegetative period tended to separate root and shoot growth processes throughout the year. These results emphasize the importance of water availability and winter cold on fine root growth. A trade-off appears to exist between the duration of the vegetative period and the overlap between root and shoot growth processes.  相似文献   
64.
森林地下碳分配(TBCA)是森林碳循环的重要通量,对森林碳吸存有十分重要作用.TBCA是森林生态系统GPP中一个最大的汇,可占GPP的21%~61%,土壤呼吸的2/3来自TBCA.目前国际上常用的TBCA测定方法为碳平衡法,在假定地下碳库处于稳定状态时,TB-CA可由土壤呼吸减去凋落物量获得,但该方法存在一系列问题.影响森林TBCA的因素有生产力、森林类型、树龄和森林演替阶段、土壤养分和水分有效性、林分密度和树种组成、气候变化因素等.TBCA中各个组成部分均较难以测定和量化,通常假定TBCA中根系呼吸与根系生产力各约占50%,而TBCA中菌根菌和根系分泌物的贡献则仍不清楚.有关TBCA各组分去向及影响机理的研究亦很少.TBCA未来的研究应致力于揭示TBCA的根本驱动因子和其对全球变化的响应机理,以及TBCA转化为土壤新碳的效率及控制因素;同时应提高TBCA测定方法的确定性,特别是应将碳同位素法、微根管法及碳平衡法三者相结合.  相似文献   
65.
Many studies focus on the effects of vegetation cover on water erosion rates, whereas little attention has been paid to the effects of the below ground biomass. Recent research indicates that roots can reduce concentrated flow erosion rates significantly. In order to predict this root effect more accurately, this experimental study aims at gaining more insight into the importance of root architecture, soil and flow characteristics to the erosion‐reducing potential of roots during concentrated flow. Treatments were (1) bare, (2) grass (representing a fine‐branched root system), (3) carrots (representing a tap root system) and (4) carrots and fine‐branched weeds (representing both tap and fine‐branched roots). The soil types tested were a sandy loam and a silt loam. For each treatment, root density, root length density and mean root diameter (D) were assessed. Relative soil detachment rates and mean bottom flow shear stress were calculated. The results indicate that tap roots reduce the erosion rates to a lesser extent compared with fine‐branched roots. Different relationships linking relative soil detachment rate with root density could be established for different root diameter classes. Carrots with very fine roots (D < 5 mm) show a similar negative exponential relationship between root density and relative soil detachment rate to grass roots. With increasing root diameter (5 < D < 15 mm) the erosion‐reducing effect of carrot type roots becomes less pronounced. Additionally, an equation estimating the erosion‐reducing potential of root systems containing both tap roots and fine‐branched roots could be established. Moreover, the erosion‐reducing potential of grass roots is less pronounced for a sandy loam soil compared with a silt loam soil and a larger erosion‐reducing potential for both grass and carrot roots was found for initially wet soils. For carrots grown on a sandy loam soil, the erosion‐reducing effect of roots decreases with increasing flow shear stress. For grasses, grown on both soil types, no significant differences could be found according to flow shear stress. The erosion‐reducing effect of roots during concentrated flow is much more pronounced than suggested in previous studies dealing with interrill and rill erosion. Root density and root diameter explain the observed erosion rates during concentrated flow well for the different soil types tested. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
66.
A morphometric analysis of the gills ofOreochromis alcalicus grahami has been carried out on specimens from ecologically distinct lagoons and a water-holding tank of Lake Magadi, a highly alkaline salt lake situated in a volcanically active region of the southern part of the Great Rift Valley in Kenya. The data were compared with those fromOreochromis niloticus, a close relative that lives in fresh water and with data from other fresh water and marine fish. Our primary goal was to identify the possible adaptive features which enable the fish to survive in an environment characterized by severely fluctuating levels of oxygen, a condition exacerbated by factors such as high temperature, alkalinity and osmolarity. The specimens ofO. a. grahami from the south-western lagoons of the lake had gills better adapted for gas exchange with a body mass specific diffusing capacity for oxygen which was about 2 times greater than that of the gills of the specimens from the fish spring lagoons and 2.5 times that of those from the water-holding tanks. Some parameters of the gills ofO. a. grahami, e.g. the gill filament length and number of gill filaments are significantly greater than those ofO. niloticus but the number of secondary lamellae, area of secondary lamellae and the diffusing capacity of the gills are similar in the two species. Compared with most other fish, the gills ofO. a. grahami appear to be particularly well adapted for gas exchange especially by having a thin water-blood barrier. Perhaps in no other extant fish have the gills had to be so exquisitely designed to meet environmental extremes and regulate complex and at times conflicting functions such as gas exchange, iono-regulation, acid-base balance and nitrogenous waste excretion as inO. a. grahami  相似文献   
67.
三江平原沼泽地碳循环初探   总被引:35,自引:1,他引:35  
马学慧  吕宪国 《地理科学》1996,16(4):323-330
在三江平原多年考察与研究的基础上,通过典型沼泽的定位观测,估算了三江平原沼泽土壤中的碳储量,探讨了沼泽植物对大气CO2的固定,碳素自沼泽土壤向大气的转移,沼泽近地气层CO2流,以及沼泽植物-土壤-大气之间的碳素流动。  相似文献   
68.
Many studies on global climate have forecast major changes in the amounts and spatial patterns of precipitation that may significantly affect temperate grasslands in arid and semi-arid regions. As a part of ChinaFLUX, eddy covariance flux measurements were made at a semi-arid Leymus chinensis steppe in Inner Mongolia, China during 2003-2004 to quantify the response of carbon exchange to environmental changes. Results showed that gross ecosystem production (FGEP) and ecosystem respiration (Reco) of the steppe were significantly depressed by water stress due to lack of precipitation during the growing season. Temperature was the dominant factor affecting FGEP and Reco in 2003, whereas soil moisture imposed a significant influence on both Reco and FGEP in 2004. Under wet conditions, Reco showed an exponentially increasing trend with temperature (Q10 = 2.0), but an apparent reduction in the value of Reco and its temperature sensitivity were observed during the periods of water stress (Q10=1.6). Both heat and water stress can cause decrease in FGEP. The sea-sonality of ecosystem carbon exchange was strongly correlated with the variation of precipitation. With less precipitation in 2003, the steppe sequestrated carbon in June and July, and went into a senescence in early August due to water stress. As compared to 2003, the severe drought during the spring of 2004 delayed the growth of the steppe until late June, and the steppe became a CO2 sink from early July until mid-September, with ample precipitation in August. The semi-arid steppe released a total of 9.7 g C·m-2 from May 16 to the end of September 2003, whereas the net carbon budget during the same period in 2004 was close to zero. Long-term measurements over various grasslands are needed to quantify carbon balance in temperate grasslands.  相似文献   
69.
Knowledge of seasonal variation of net ecosystem CO2 exchange (NEE) and its biotic and abiotic controllers will further our understanding of carbon cycling process, mechanism and large-scale modelling. Eddy covariance technique was used to measure NEE, biotic and abiotic factors for nearly 3 years in the hinterland alpine steppe--Korbresia meadow grassland on the Tibetan Plateau, the present highest fluxnet station in the world. The main objectives are to investigate dynamics of NEE and its components and to determine the major controlling factors. Maximum carbon assimilation took place in August and maximum carbon loss occurred in November. In June, rainfall amount due to monsoon climate played a great role in grass greening and consequently influenced interannual variation of ecosystem carbon gain. From July through September, monthly NEE presented net carbon assimilation. In other months, ecosystem exhibited carbon loss. In growing season, daytime NEE was mainly controlled by photosynthetically active radiation (PAR). In addition, leaf area index (LAI) interacted with PAR and together modulated NEE rates. Ecosystem respiration was controlled mainly by soil temperature and simultaneously by soil moisture. Q10 was negatively correlated with soil temperature but positively correlated with soil moisture. Large daily range of air temperature is not necessary to enhance carbon gain. Standard respiration rate at referenced 10℃(R10) was positively correlated with soil moisture, soil temperature, LAI and aboveground biomass. Rainfall patterns in growing season markedly influenced soil moisture and therefore soil moisture controlled seasonal change of ecosystem respiration. Pulse rainfall in the beginning and at the end of growing season induced great ecosystem respiration and consequently a great amount of carbon was lost. Short growing season and relative low temperature restrained alpine grass vegetation development. The results suggested that LAI be usually in a low level and carbon uptake be relatively low. Rainfall patterns in the growing season and pulse rainfall in the beginning and at end of growing season control ecosystem respiration and consequently influence carbon balance of ecosystem.  相似文献   
70.
Previous investigations into factors influencing incubation success of salmonid progeny have largely been limited to the development of empirical relationships between characteristics of the incubation environment and survival to emergence. It is suggested that adopting a process‐based approach to assessing incubation success aids identification of the precise causes of embryonic mortalities, and provides a robust framework for developing and implementing managerial responses. Identifying oxygen availability within the incubation environment as a limiting factor, a comprehensive review of trends in embryonic respiration, and processes influencing the flux of oxygenated water through gravel riverbeds is provided. The availability of oxygen to incubating salmonid embryos is dependent on the exchange of oxygenated water with the riverbed, and the ability of the riverbed gravel medium to transport this water at a rate and concentration appropriate to support embryonic respiratory requirements. Embryonic respiratory trends indicate that oxygen consumption varies with stage of development, ambient water temperature and oxygen availability. The flux of oxygenated water through the incubation environment is controlled by a complex interaction of intragravel and extragravel processes and factors. The processes driving the exchange of channel water with gravel riverbeds include bed topography, bed permeability, and surface roughness effects. The flux of oxygenated water through riverbed gravels is controlled by gravel permeability, coupling of surface–subsurface flow and oxygen demands imposed by materials infiltrating riverbed gravels. Temporally and spatially variable inputs of groundwater can also influence the oxygen concentration of interstitial water. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号