首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   125篇
  免费   15篇
  国内免费   49篇
地球物理   12篇
地质学   158篇
海洋学   6篇
综合类   11篇
自然地理   2篇
  2023年   4篇
  2022年   1篇
  2021年   2篇
  2020年   5篇
  2019年   13篇
  2018年   6篇
  2017年   6篇
  2016年   9篇
  2015年   7篇
  2014年   7篇
  2013年   8篇
  2012年   4篇
  2011年   14篇
  2010年   4篇
  2009年   5篇
  2008年   12篇
  2007年   8篇
  2006年   7篇
  2005年   8篇
  2004年   6篇
  2003年   5篇
  2002年   5篇
  2001年   3篇
  2000年   6篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   5篇
  1995年   3篇
  1994年   3篇
  1993年   4篇
  1992年   5篇
  1991年   5篇
  1990年   3篇
  1986年   1篇
  1981年   1篇
排序方式: 共有189条查询结果,搜索用时 15 毫秒
1.
通过杂质对导电类型的影响的研究,得出了同种矿物的不同导电类型与矿物形成温度的规律:电子型(n型)导电矿物的形成温度大于电子与空穴混合型导电矿物的形成温度,又大于空穴型(p型)导电矿物的形成温度,绝缘体矿物的形成温度低于上述三种导电类型矿物。应用矿物热电图谱仪,天然金刚石半导体测试仪对闪锌矿、黄铁矿、金刚石等矿物的导电类型进行了测试,并探讨了导电类型成因,证实了上述规律的正确性。  相似文献   
2.
The role of municipal solid waste (MSW) landfill leachate on the genesis of minor amounts of pyrite associated with gypsum in an otherwise predominantly evaporitic sequence was studied in geological and geochemical terms. The potential association between landfill leachate and the conditions required for bacterial reduction of sulfate and fixation of H2S as pyrite were examined. The lithological column was generally found to contain little or no Fe. The δ34S values for sulfates were consistent with previously reported data; however, the measured δ18O values were slightly higher. Sulfides disseminated in the marl/lutite exhibited higher δ34S values (≈−8‰) than gypsum-coating pyrite crystals (δ34S < −30‰). Dissolution of gypsum to sulfate and the supply of metabolizable organic matter and Fe required for H2S fixation as sulfides may have originated from landfill leachate. Intermittent availability of leachate, a result of the precipitation regime, can facilitate sulfur disproportionation and lead to fractionations as high as   相似文献   
3.
Agricultural soils of the Riotinto mining area (Iberian Pyrite Belt) have been studied to assess the degree of pollution by trace elements as a consequence of the extraction and treatment of sulphides. Fifteen soil samples were collected and analysed by ICP-OES and INAA for 51 elements. Chemical analyses showed an As–Cu–Pb–Zn association related with the mineralisation of the Iberian Pyrite Belt. Concentrations were 19–994 mg kg−1 for As, 41–4,890 mg kg−1 for Pb, 95–897 mg kg−1 for Zn and of 27–1,160 mg kg−1 for Cu. Most of the samples displayed concentrations of these elements higher than the 90th percentile of the corresponding geological dominium, which suggests an anthropogenic input besides the bedrock influence. Samples collected from sediments were more contaminated than leptosols because they were polluted by leachates or by mining spills coming from the waste rock piles. The weathering of the bedrock is responsible for high concentrations in Co, Cr and Ni, but an anthropogenic input, such as wind-blown dust, seems to be indicative of the high content of As, Cu, Pb and Zn in leptosols. The metal partitioning patterns show that most trace elements are associated with Fe amorphous oxy-hydroxides, or take part of the residual fraction. According to the results obtained, the following mobility sequence is proposed for major and minor elements: Mn, Pb, Cd, > Zn, Cu > Ni > As > Fe > Cr. The high mobility of Pb, Cu and Zn involve an environmental risk in this area, even in soils where the concentrations are not so high.  相似文献   
4.
The early diagenesis of trace elements (V, Cr, Co, Cu, Zn, As, Cd, Ba, U) in anoxic sediments of the Achterwasser, a shallow lagoon in the non-tidal Oder estuary in the Baltic Sea, was investigated in the context of pyrite formation. The dissolved major redox parameters show a two-tier distribution with transient signals in the occasionally re-suspended fluid mud layer (FM) and a permanently established diagenetic sequence in the sediment below. Intense microbial respiration leads to rapid depletion of O2 within the uppermost mm of the FM. The reduction zones of Mn, Fe and sulfate overlap in the FM and in the permanently anoxic sediment section which appears to be a typical feature of estuarine sediments, under low-sulfate conditions. Degrees of pyritization (DOP) range from 50% in the FM to remarkably high values > 90% at 50 cm depth. Pyrite formation at the sediment surface is attributed to the reaction of Fe-monosulfides with intermediate sulfur species via the polysulfide pathway. By contrast, intense pyritization in the permanently anoxic sediment below is attributed to mineral growth via adsorption of aqueous Fe-sulfide complexes onto pyrite crystals which had originally formed in the surface layer.The studied trace elements show differential behavior patterns which are closely coupled to the diagenetic processes described above: (i) Zn, Cu and Cd are liberated from organic matter in the thin oxic layer of the sediment and diffuse both upwards across the sediment/water boundary and downwards to be trapped as monosulfides, (ii) V, Cr, Co and As are released during reductive dissolution of Mn- and Fe-oxyhydroxides, (iii) U removal from pore water occurs concomitantly to Fe reduction in the FM and is attributed to reduction of U(VI) to U(IV), (iv) the Ba distribution is controlled by reductive dissolution of authigenic barite in the sulfate reduction zone coupled with upward diffusion and re-precipitation. The incorporation of trace elements into pyrite is most intense for Co, Mn and As, intermediate for Cu and Cr and little to negligible for U, Zn, Cd, V and Ba. The observed trend is largely in agreement with previous studies and may be explained with differing rates for ligand exchange. Slow and fast ligand exchange and thus precipitation kinetics are also displayed by downcore increasing (Mn, Cr, Co and As) or constantly low (Zn, Cu, Cd) pore water concentrations. The downward increasing degrees of trace metal pyritization (DTMP) for Co, Cu, Zn and As are, in analogy to pyrite growth, assigned to adsorption of sulfide complexes or As oxyanions onto preexisting pyrite minerals.  相似文献   
5.
As a result of the collapse of the Aznalcollar mine tailings dam, a large extension of the Guadiamar valley in SW Spain was covered with a layer of pyrite sludge. Although most of the sludge was removed, a small amount remains in the soil, constituting a potential source of water pollution. A column experiment was carried out in order to determine the rate of sludge oxidation in the soil, and the existence of metal retention processes. The column was filled with a mixture of sludge and a sandy soil common in the region. At different time intervals, the column was leached with water and the resulting solution analysed.

The pH of the water dropped to values around 2 after 260 days and then remained constant due to the buffering role of silicate dissolution. The concentration of Zn, Cd and Co in the leachates matched the expected values from flow-through experiments at atmospheric oxygen pressure. This indicates that oxygen diffusion in the pores was complete. Moreover, no efficient processes existed for retaining Zn, Cd and Co, which formed soluble salts and were entirely incorporated into the infiltrating water. During the first 2 months of the experiment, when pH was higher than 4.5, the concentrations of Fe and Al were very low. Saturation indices showed that the solution was in equilibrium with amorphous Fe(OH)3 and Al(OH)3. Subsequently, at lower pH values, jarosite [(Na,K)Fe3(SO4)2(OH)6] formed. This solid phase was identified by X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). Jarosite was also responsible for the depletion of As, Pb, Sb and probably Tl in the water resulting from infiltration.  相似文献   

6.
侯龙海 《江苏地质》2003,27(1):12-18
以大平山铜矿、天台山黄铁矿矿为例,阐述了该区的矿区、矿床地质及火山机构特征,并从成矿时间、空间及成因三个方面论述了矿床成矿与古火山机构的关系。  相似文献   
7.
Interatomic potential parameters have been derived at simulated temperatures of 0 K and 300 K to model pyrite FeS2. The predicted pyrite structures are within 1% of those determined experimentally, while the calculated bulk modulus is within 7%. The model is also able to simulate the properties of marcasite, even though no data for this phase were included in the fitting procedure. There is almost no difference in results obtained for pyrite using the two potential sets; however, when used to model FeS2 marcasite, the potential fitted at 0 K performs better. The potentials have also been used to study the high-pressure behaviour of pyrite up to 44 GPa. The calculated equation of state gives good agreement with experiment and shows that the Fe–S bonds shorten more rapidly that the S–S dimer bonds. The behaviour of marcasite at high pressure is found to be similar to that of pyrite.  相似文献   
8.
The chemical composition of pyrite in coal can be used to investigate its geological and mineralogical origin. In this paper, high-resolution time-of-flight secondary ion mass spectrometry (TOF-SIMS) was used to study the chemical composition of various pyrite forms in the No. 9 coal seam (St,d=3.46%) from the Wuda Coalfield, Inner Mongolia, northern China. These include bacteriogenic, framboidal, massive, cell-filling, fracture-filling, and nodular pyrites. In addition to Fe+ (54Fe+, 56Fe+, 57Fe+), other fragment ions were detected in bacteriogenic pyrites, such as 27Al+, Si+ (28Si+, 29Si+, 30Si+), 40Ca+, Cu+ (63Cu+, 65Cu+), Zn+ (64Zn+, 66Zn+, 67Zn+, 68Zn+), Ni+ (58Ni+, 60Ni+, 62Ni+), and C3H7+. TOF-SIMS images show bacteriogenic pyrites are relatively rich in Cu, Zn, and Ni, suggesting that bacteria probably play an important role in the enrichment of Cu, Zn, and Ni during their formation. Intense positive secondary ion fragments from framboidal aggregates, such as 27Al+, 28Si+, 29Si+, AlO+, CH2+, C3H3+, C3H5+, and C4H7+, indicate that formation of the framboidal aggregates may have occurred together with clay mineral and organic matter, which probably serve as the binding substance. The intense ions of 28Si+ and 27Al+ from massive pyrites also suggest that their pores incorporated clay minerals during crystallization. Together with the lowest 28Si+/23Na+ value, the intense organic positive secondary ion peaks from cell-filling pyrites, such as C3H3+, C3H5+, C3H7+, and C4H7+, indicate that pyrite formation may have accompanied dissolution or disintegration of the cell. The intense P+ peak was observed only in the fracture-filling pyrite and the highest 28Si+/23Na+ value of fracture-filling pyrite reflects its epigenetic origin. Together with XRD and REEs data, the stronger 40Ca+ in nodular pyrite than other pyrite forms shows seawater influence during its formation.  相似文献   
9.
陕西凤县庞家河金矿床基本地质特征及成矿作用分析   总被引:5,自引:0,他引:5  
阐述了庞家河金矿床的地层、构造控矿特征,研究了矿床的化学成分、微量元素及矿体、矿石的基本特点,分析了矿石及矿石矿物黄铁矿的O、S、Pb稳定同位素组成;认为庞家河金矿的成矿介质水为同生建造水,成矿物质来源于围岩上沉盆统下东沟组,矿床类型为热水溶滤成因的微细浸染型。  相似文献   
10.
辽宁红透山铜-锌块状硫化物产在太古宙绿岩带中,矿床形成后经历了强烈的变形和变质,变质程度达高级角闪岩相。野外和显微镜研究表明,矿石在进变质过程中发生过强烈的机械再活化和重结晶,但各种进变质结构大部分已被变质峰期的全面重结晶所清除,目前保存着的结构主要是变质峰期和退变质过程的产物。退变质过程以黄铁矿变斑晶生长、矿石糜棱岩的形成、二次退火和化学再活化为特征。矿床中高度富集铜和金的矿石是韧性剪切形成的矿石糜棱岩受退变质流体叠加而成。磁黄铁矿主要是同生沉积后重结晶的产物,另有一部分由退变质热液形成,而黄铁矿变斑晶则有沉积一重结晶、磁黄铁矿退变质脱硫和热液叠加多种成因。世界各地块状硫化物矿床中的磁黄铁矿和黄铁矿各有三种成因类型。磁黄铁矿的类型有:同生沉积.变质重结晶、同生沉积黄铁矿变质和退变质热液充填或交代;黄铁矿的类型有:同生沉积-变质重结晶、磁黄铁矿退变质脱硫和退变质热液充填或交代。红透山矿区的退变质流体具有从早到晚氧逸度升高的趋势。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号