首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   180篇
  免费   14篇
  国内免费   26篇
测绘学   17篇
大气科学   119篇
地球物理   17篇
地质学   21篇
海洋学   17篇
天文学   20篇
综合类   2篇
自然地理   7篇
  2023年   1篇
  2022年   3篇
  2021年   4篇
  2020年   11篇
  2019年   3篇
  2018年   1篇
  2017年   6篇
  2016年   8篇
  2015年   28篇
  2014年   35篇
  2013年   35篇
  2012年   9篇
  2011年   16篇
  2010年   8篇
  2009年   9篇
  2008年   6篇
  2007年   4篇
  2006年   2篇
  2005年   6篇
  2004年   1篇
  2003年   2篇
  2002年   3篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1983年   3篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
  1970年   1篇
  1968年   1篇
排序方式: 共有220条查询结果,搜索用时 171 毫秒
11.
The seasonality of primary productivity plays an important role in nutrient and carbon cycling. We quantify the seasonality of satellite-derived, oceanic net primary production (NPP) and its interannual variability during the first decade of the SeaWiFS mission (1998 to 2007) using a normalized seasonality index (NSI). The NSI, which is based upon production half-time, t(1/2), generally becomes progressively more episodic with increasing latitude in open ocean waters, spanning from a relatively constant rate of primary productivity throughout the year (mean t(1/2) ~5 months) in subtropical waters to more pulsed events (mean t(1/2) ~3 months) in subpolar waters. This relatively gradual, poleward pattern in NSI differs from recent estimates of phytoplankton bloom duration, another measure of seasonality, at lower latitudes (~40°S–40°N). These differences likely reflect the temporal component of production assessed by each metric, with NSI able to more fully capture the irregular nature of production characteristic of waters in this zonal band. The interannual variability in NSI was generally low, with higher variability observed primarily in frontal and seasonal upwelling zones. The influence of the El Niño–Southern Oscillation on this variability was clearly evident, particularly in the equatorial Pacific, where primary productivity was anomalously episodic from the date line east to the coast of South America in 1998. Yearly seasonality and the magnitude of annual production were generally positively correlated at mid-latitudes and negatively correlated at tropical latitudes, particularly in a region bordering the Pacific equatorial divergence. This implies that increases of annual production in the former region are attained over the course of a year by shorter duration but higher magnitude NPP events, while in the latter areas it results from an increased frequency or duration of similar magnitude events. Statistically significant trends in the seasonality, both positive and negative, were detected in various patches. We suggest that NSI be used together with other phenomenological characteristics of phytoplankton biomass and productivity, such as the timing of bloom initiation and duration, as a means to remotely quantify phytoplankton seasonality and monitor the response of the oceanic ecosystem to environmental variability and climate change.  相似文献   
12.
Based on a large number of energy-economic and integrated assessment models, the Energy Modeling Forum (EMF) 27 study systematically explores the implications of technology cost and availability for feasibility and macroeconomic costs of energy system transformations toward climate stabilization. At the highest level, the technology strategy articulated in all the scenarios in EMF27 includes three elements: decarbonization of energy supply, increasing the use of low-carbon energy carriers in end-use, and reduction of energy use. The way that the scenarios differ is in the degree to which these different elements of strategy are implemented, the timing of those implementations, and the associated macroeconomic costs. The study also discusses the value of individual technologies for achieving climate stabilization. A robust finding is that the unavailability of carbon capture and storage and limited availability of bioenergy have the largest impact on feasibility and macroeconomic costs for stabilizing atmospheric concentrations at low levels, mostly because of their combined ability to remove carbon from the atmosphere. Constraining options in the electric sector such as nuclear power, wind and solar energy in contrast has a much smaller impact on the cost of mitigation.  相似文献   
13.
Tropical instability waves (TIWs) arise from oceanic instability in the eastern tropical Pacific and Atlantic Oceans, having a clear atmospheric signature that results in coupled atmosphere–ocean interactions at TIW scales. In this study, the extent to which TIW-induced surface wind feedback influences the ocean is examined using an ocean general circulation model (OGCM). The TIW-induced wind stress (τTIW) part is diagnostically determined using an empirical τTIW model from sea surface temperature (SST) fields simulated in the OGCM. The interactively represented TIW wind tends to reduce TIW activity in the ocean and influence the mean state, with largest impacts during TIW active periods in fall and winter. In December, the interactive τTIW forcing induces a surface cooling (an order of ?0.1 to ?0.3 °C), an increased heat flux into the ocean, a shallower mixed layer and a weakening of the South Equatorial Current in the eastern equatorial Pacific. Additionally, the TIW wind effect yields a pronounced latitudinal asymmetry of sea level field across the equator, and a change to upper thermal structure, characterized by a surface cooling and a warming below in the thermocline, leading to a decreased temperature gradient between the mixed layer and the thermocline. Processes responsible for the τTIW–induced cooling effects are analyzed. Vertical mixing and meridional advection are the two terms in the SST budget that are dominantly affected by the TIW wind feedback: the cooling effect from the vertical mixing on SST is enhanced, with the maximum induced cooling in winter; the warming effect from the meridional advection is reduced in July–October, but enhanced in November–December. Additional experiments are performed to separate the relative roles the affected surface momentum and heat fluxes play in the cooling effect on SST. This ocean-only modeling work indicates that the effect of TIW-induced wind feedback is small but not negligible, and may need to be adequately taken into account in large-scale climate modeling.  相似文献   
14.
In this paper, the leading modes of ocean temperature anomalies (OTA) along the equatorial Pacific Ocean are analyzed and their connection with El Niño-Southern Oscillation (ENSO) and interdecadal variation is investigated. The first two leading modes of OTA are connected with the different phases of the canonical ENSO and display asymmetric features of ENSO evolution. The third leading mode depicts a tripole pattern with opposite variation of OTA above the thermocline in the central Pacific to that along the thermocline in the eastern and western Pacific. This mode is found to be associated with so-called ENSO-Modoki. Insignificant correlations of this mode with the first two leading modes suggest that ENSO-Modoki may be a mode that is independent to the canonical ENSO and also has longer time scales compared with the canonical ENSO. The fourth mode reflects a warming (cooling) tendency above (below) the thermocline since 2000. Both the first and second modes have a large contribution to the interdecadal change in thermocline during 1979–2012. Also, the analysis also documents that both ENSO and OTA shifted into higher frequency since 2000 compared with that during 1979–1999. Interestingly, the ENSO-Modoki related OTA mode does not have any trend or significant interdecadal shift during 1979–2012. In addition, it is shown that first four EOF modes seem robust before and after 1999/2000, suggesting that the interdecadal shift of the climate system in the tropical Pacific is mainly a frequency shift and the changes in spatial pattern are relatively small, although the mean states over two periods experienced some significant changes.  相似文献   
15.
Total suspended sediment (TSS) data concentrations are retrieved from two sets of satellite ocean color data (the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Aqua and the Korean Geostationary Ocean Color Imager (GOCI)) using an existing regional model to characterize spatial and temporal variation of TSS in the Yellow and East China Seas. MODIS-derived TSS maps show that TSS concentrations are, in general, high along the Korean and Chinese coasts including the Bohai Sea and the Yangtz River estuary, and lower in the middle of the Yellow Sea and the southeastern area of the East China Sea. The monthly average of 10-year MODIS data reveals that TSS values are highest during winter (January to February) and lowest in summer (July to August). Short-term TSS concentrations retrieved from GOCI data showed the dominant influence of semi-diurnal tidal changes on sediment dynamics through temporal (hourly) and spatial distribution in coastal zones of the Yellow sea. The results presented here demonstrate that the satellite-derived TSS products can be utilized as an application tool for future studies on long- and short-term sediment dynamics of turbid coastal waters. In particular, GOCI observations provide unique important capabilities to characterize and quantify the water properties at high temporal (hourly) and spatial (0.5 km) resolutions in the turbid coastal waters of the Yellow Sea and its vicinities.  相似文献   
16.
Biases of subseasonal prediction of the Asian summer monsoon are diagnosed using daily data from the hindcasts of 45-day integrations by the National Centers for Environmental Prediction Climate Forecast System version 2. The retrospective forecasts often show apparent systematic biases, which are mostly represented by the underestimation of the whole Asian monsoon. Biases depend not only on lead time, but also on the stage of monsoon evolution. An abrupt turning point of bias development appears around late June and early July, when ensemble spread and bias growth of winds and precipitation show a significant change over the northwestern Pacific (NWP) and the South Asian summer monsoon (SASM) region. The abrupt turning of bias development of winds, precipitation, and surface temperature is also captured by the first two modes of multivariate empirical orthogonal function analysis. Several features appear associated with the abrupt change in bias development: the western Pacific subtropical high (WPSH) begins its first northward jump and the surface temperature over the Tibetan Plateau commences a transition from warm bias to cold bias, and a reversal of surface temperature biases occurs in the eastern tropical Indian Ocean and the SASM region. The shift of WPSH position and the transition of surface thermal bias show close relationships with the formation of bias centers in winds and precipitation. The rapid growth in bias due to the strong internal atmospheric variability during short leads seems to mainly account for the weak WPSH and SASM in the model. However, at certain stages, particularly for longer-lead predictions, the biases of slowly varying components may also play an important role in bias development of winds and precipitation.  相似文献   
17.
The capability of a set of 7 coordinated regional climate model simulations performed in the framework of the CLARIS-LPB Project in reproducing the mean climate conditions over the South American continent has been evaluated. The model simulations were forced by the ERA-Interim reanalysis dataset for the period 1990–2008 on a grid resolution of 50 km, following the CORDEX protocol. The analysis was focused on evaluating the reliability of simulating mean precipitation and surface air temperature, which are the variables most commonly used for impact studies. Both the common features and the differences among individual models have been evaluated and compared against several observational datasets. In this study the ensemble bias and the degree of agreement among individual models have been quantified. The evaluation was focused on the seasonal means, the area-averaged annual cycles and the frequency distributions of monthly means over target sub-regions. Results show that the Regional Climate Model ensemble reproduces adequately well these features, with biases mostly within ±2 °C and ±20 % for temperature and precipitation, respectively. However, the multi-model ensemble depicts larger biases and larger uncertainty (as defined by the standard deviation of the models) over tropical regions compared with subtropical regions. Though some systematic biases were detected particularly over the La Plata Basin region, such as underestimation of rainfall during winter months and overestimation of temperature during summer months, every model shares a similar behavior and, consequently, the uncertainty in simulating current climate conditions is low. Every model is able to capture the variety in the shape of the frequency distribution for both temperature and precipitation along the South American continent. Differences among individual models and observations revealed the nature of individual model biases, showing either a shift in the distribution or an overestimation or underestimation of the range of variability.  相似文献   
18.
The Global Warming Potential (GWP) index is currently used to create CO2-equivalent emission totals for multi-gas greenhouse targets. While many alternatives have been proposed, it is not possible to uniquely define a metric that captures the different impacts of emissions of substances with widely disparate atmospheric lifetimes, which leads to a wide range of possible index values. We examine the sensitivity of emissions and climate outcomes to the value of the index used to aggregate methane emissions using a technologically detailed integrated assessment model. The methane index is varied between 4 and 70, with a central value of 21, which is the 100-year GWP value currently used in policy contexts. We find that the sensitivity to index value is, at most, 10–18 % in terms of methane emissions but only 2–3 % in terms of the maximum total radiative forcing change, with larger regional emissions differences in some cases. The choice of index also affects estimates of the cost of meeting a given end of century forcing target, with total two-gas mitigation cost increasing by 7–9 % if the index is increased, and increasing in most scenarios from 4 to 23 % if the index is lowered, with a slight (1 %) decrease in total cost in one case. We find that much of the methane abatement occurs as the induced effect of CO2 abatement rather than explicit abatement, which is one reason why climate outcomes are relatively insensitive to the index value. We also find that the near-term climate benefit of increasing the methane index is small.  相似文献   
19.
The importance of sulfur dioxide emissions for climate change is now established, although substantial uncertainties remain. This paper presents projections for future sulfur dioxide emissions using the MiniCAM integrated assessment model. A new income-based parameterization for future sulfur dioxide emissions controls is developed based on purchasing power parity (PPP) income estimates and historical trends related to the implementation of sulfur emissions limitations. This parameterization is then used to produce sulfur dioxide emissions trajectories for the set of scenarios developed for the Special Report on Emission Scenarios (SRES). We use the SRES methodology to produce harmonized SRES scenarios using the latest version of the MiniCAM model. The implications, and requirements, for integrated assessment modeling of sulfur dioxide emissions are discussed. We find that sulfur emissions eventually decline over the next century under a wide set of assumptions. These emission reductions result from a combination of emission controls, the adoption of advanced electric technologies, and a shift away from the direct end use of coal with increasing income levels. Only under a scenario where incomes in developing regions increase slowly do global emission levels remain at close to present levels over the next century. Under a climate policy that limits emissions of carbon dioxide, sulfur dioxide emissions fall in a relatively narrow range. In most cases, the relative climatic effect of sulfur dioxide emissions decreases dramatically to a point where sulfur dioxide is only a minor component of climate forcing by the end of the century. Ecological effects of sulfur dioxide, however, could be significant in some developing regions for many decades to come.  相似文献   
20.
All of the OGO-5 light ion density measurements (covering the period from March 1968 to May 1969) obtained from the Lockheed Light Ion Mass Spectrometer were used to determine the average global topology of the equatorial plasmasphere density distribution. The variation of the light ion equatorial density at L?3.2 with local time was deduced by determining the average density observed within one hour of a specific local time and within 0.1 of a given L coordinate. The average H+ density showed a semidiurnal variation with peaks near noon and midnight. The He+ observations also revealed multiple peaks throughout the day but with smaller amplitudes than those of H+. At L>3.2 plasma trough conditions increase the scatter of densities. The average variation of the H+ density with L within the plasmasphere is found to be steepest near midnight and can be least squares fitted equally well to either an exponential variation exp (?bL) where b is between 0.85 and 1.5 or to a power law L?a where a varies from 3.2 to 5.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号