首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
  国内免费   1篇
大气科学   2篇
地球物理   3篇
地质学   10篇
天文学   1篇
自然地理   2篇
  2022年   2篇
  2019年   1篇
  2018年   1篇
  2017年   3篇
  2014年   2篇
  2013年   2篇
  2011年   2篇
  2010年   1篇
  2006年   2篇
  1998年   1篇
  1993年   1篇
排序方式: 共有18条查询结果,搜索用时 53 毫秒
11.
Geomagnetic disturbances are the results of interplanetary causes such as high-speed streamers (HSSs), interplanetary coronal mass ejections (ICMEs), corotating interaction regions (CIRs), and magnetic clouds. During different forms of geomagnetic disturbances, we observed changes in the count rate at neutron monitors that are kept at various locations. We studied the count rates measured by neutron monitors at four stations at various latitudes during different categories of geomagnetic events and compared them. We analysed five events: a geomagnetically quiet event, a non-storm high-intensity long-duration continuous AE activity (HILDCAA) event, a storm-preceded HILDCAA event, a geomagnetic substorm event, and a geomagnetic moderate storm event. We based our analysis on geomagnetic indices, solar wind parameters, and interplanetary magnetic field (IMF) parameters. We found that the strength of the modulation was least during the quiet event and highest during the storm-preceded HILDCAA. By analysing the cause of these geomagnetic disturbances, we related each decrease in the neutron monitor data with the corresponding solar cause. For the ICME-driven storm, we observed a decrease in neutron monitor data ranging from 6% to 12% in all stations. On the other hand, we observed a decrease ranging from 2% to 5% for the HSS-driven storm. For the non-storm HILDCAA, we observed a decrease in neutron monitor data of about 1% to 1.5%. For the quiet event, the neutron monitor data fluctuated such that there was no overall decrease in all stations.  相似文献   
12.
13.
Deliberation over how to adapt to short or long-term impacts of climate change takes place in a complex political setting, where actors’ interests and priorities shape the temporal dimension of adaptation plans, policies and actions. As actors interact to pursue their individual or collective interests, these struggles turn into dynamic power interplay. In this article, we aim to show how power interplay shapes local adaptation plans of action (LAPAs) in Nepal to be short-term and reactive. We use an interactional framing approach through interaction analyses and observations to analyse how actors use material and ideational resources to pursue their interests. Material and ideational resources that an actor deploys include political authority, knowledge of adaptation science and national/local policy-making processes, financial resources and strong relations with international non-governmental organizations and donor agencies. We find that facilitators and local politicians have a very prominent role in meetings relating to LAPAs, resulting in short-termism of LAPAs. Findings suggest that there is also a lack of female participation contributing to short-term orientated plans. We conclude that such power interplay analysis can help to investigate how decision making on the temporal aspects of climate adaptation policy takes place at the local level.

Key policy insights

  • Short-termism of LAPAs is attributed to the power interplay between actors during the policy design process.

  • Improved participation of the most vulnerable, especially women, can lead to the preparation of adaptation plans and strategies focusing on both the short and long-term.

  • It is pertinent to consider power interplay in the design and planning of adaptation policy in order to create a level-playing field between actors for inclusive decision-making.

  • Analysis of dynamic power interplay can help in investigating climate change adaptation controversies that are marked by uncertainties and ambiguities.

  相似文献   
14.
Clayey subgrade soil requires treatment in order to make the subgrade stable for pavement structures. Treatment of clayey soil i.e. stabilization of clayey soil by cement, lime, and fly ash are established techniques used in geotechnical and highway engineering. Stabilization by alkali activation of fly ash is reported recently but literatures are limited. Present study investigates the stress strain behavior, peak stress and ultimate strain of clayey soil stabilized by slag and slag-fly ash blending by alkali activation. The peak stress as high as 25.0 N/mm2 may be obtained at 50% slags content when 12 molar sodium hydroxide solutions were used. Peak stress, ultimate strain and slope of stress–strain curve of stabilized clay are controlled by Na/Al and Si/Al ratios. Stress–strain response and peak stress of slag and fly ash blended specimen are not governed by Na/Al and Si/Al ratios; rather the behavior is dependent predominantly on slag content.  相似文献   
15.
A series of ring shear and direct shear tests were performed to measure the drained residual strength of three clay soils. For each of the soils, slickensided direct shear specimens were prepared by wire-cutting intact specimens, and polishing the resulting shear plane on a variety of surfaces to align the clay particles in the direction of shear. Drained direct shear tests were then conducted on each of the polished specimens. The resulting shear strengths were compared with the residual strengths measured in the ring shear device to evaluate the effectiveness of the different polishing techniques for creating slickensided surfaces. Test results indicated that the measurement of residual strengths along preformed slickensided surfaces is extremely sensitive to both the soil type and the slickenside preparation technique that is used. Consequently, this approach does not appear to be a viable alternative to conventional repeated direct shear or ring shear tests to measure residual shear strengths.  相似文献   
16.
Abstract: Ilmenite, hematite, garnet, monazite, zircon, rutile, magnetite, sillimanite, pyroxene and amphibole from the beach sands of Ekakula, Gahiramatha coast, Orissa, India are reported here for the first time. Their total concentration varies from 26. 4 to 100%. Ilmenite, monazite and zircon are between 100 and 300 um in size and are well rounded in shape. Ilmenite-hematite intergrowth is common. Ilmenite has 50. 02–54. 73% TiO2, 42. 42–46. 90% FeO (total Fe) and small amounts of Al, Mn, Mg, Ca, Ba, Si, V, Cr, and Zn. The bulk samples contain 10. 63–41. 42 % TiO2, 6. 15–26. 07 % FeO, 5. 86–16. 75 % Fe2O3, 7. 41–61. 74 % SiO2, 1. 39–12. 83% A12O3, 0. 32–4. 97% CaO, 0. 53–4. 24% P2O5, 0. 17–3. 27% MgO, 0. 15–2. 97% Na2O, 0. 07–2. 34% K2O, and 0. 05–0. 71% V2O5 together with appreciable amounts of La, Ce, Pr, Nd, Sm, Eu, Y, U, Th, Zr, and trace amounts of Pb, Zn, Cu, Ni, Co, and Cr. Khondalite, charnockite, calc-silicate granulite, leptynite, migmatite, gneiss, basic granulite and pegmatite of the Eastern Ghats appear to be the major source for the above heavy mineral assemblages. The samples are amenable to gravity and magnetic methods of beneficiation.  相似文献   
17.
18.
Convection in the Earth's core is driven much harder at the bottom than the top. This is partly because the adiabatic gradient steepens towards the top, partly because the spherical geometry means the area involved increases towards the top, and partly because compositional convection is driven by light material released at the lower boundary and remixed uniformly throughout the outer core, providing a volumetric sink of buoyancy. We have therefore investigated dynamo action of thermal convection in a Boussinesq fluid contained within a rotating spherical shell driven by a combination of bottom and internal heating or cooling. We first apply a homogeneous temperature on the outer boundary in order to explore the effects of heat sinks on dynamo action; we then impose an inhomogeneous temperature proportional to a single spherical harmonic Y 2² in order to explore core-mantle interactions. With homogeneous boundary conditions and moderate Rayleigh numbers, a heat sink reduces the generated magnetic field appreciably; the magnetic Reynolds number remains high because the dominant toroidal component of flow is not reduced significantly. The dipolar structure of the field becomes more pronounced as found by other authors. Increasing the Rayleigh number yields a regime in which convection inside the tangent cylinder is strongly affected by the magnetic field. With inhomogeneous boundary conditions, a heat sink promotes boundary effects and locking of the magnetic field to boundary anomalies. We show that boundary locking is inhibited by advection of heat in the outer regions. With uniform heating, the boundary effects are only significant at low Rayleigh numbers, when dynamo action is only possible for artificially low magnetic diffusivity. With heat sinks, the boundary effects remain significant at higher Rayleigh numbers provided the convection remains weak or the fluid is stably stratified at the top. Dynamo action is driven by vigorous convection at depth while boundary thermal anomalies dominate in the upper regions. This is a likely regime for the Earth's core.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号