首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8239篇
  免费   2257篇
  国内免费   4511篇
测绘学   399篇
大气科学   246篇
地球物理   755篇
地质学   11336篇
海洋学   1200篇
天文学   58篇
综合类   421篇
自然地理   592篇
  2024年   76篇
  2023年   329篇
  2022年   427篇
  2021年   457篇
  2020年   430篇
  2019年   470篇
  2018年   369篇
  2017年   400篇
  2016年   427篇
  2015年   481篇
  2014年   661篇
  2013年   515篇
  2012年   645篇
  2011年   620篇
  2010年   511篇
  2009年   541篇
  2008年   551篇
  2007年   543篇
  2006年   523篇
  2005年   516篇
  2004年   454篇
  2003年   433篇
  2002年   436篇
  2001年   529篇
  2000年   391篇
  1999年   299篇
  1998年   334篇
  1997年   405篇
  1996年   352篇
  1995年   324篇
  1994年   314篇
  1993年   255篇
  1992年   256篇
  1991年   198篇
  1990年   198篇
  1989年   133篇
  1988年   48篇
  1987年   30篇
  1986年   22篇
  1985年   8篇
  1984年   11篇
  1983年   9篇
  1982年   8篇
  1981年   11篇
  1980年   8篇
  1979年   6篇
  1978年   10篇
  1976年   8篇
  1975年   4篇
  1973年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
炭质板岩隧道施工过程中受高地应力、地下水冲刷和施工扰动等因素影响,从细观角度分析其微裂隙变化规律具有重要意义。在实际工程现场选取炭质板岩试样,采用扫描电子显微镜(SEM)进行背散射分析,确定其组成元素;进行X射线衍射仪分析,利用MDI Jade 6软件处理,得到矿物成分及其含量;通过不同含水条件下炭质板岩单轴压缩实验得到不同含水量下的应力应变曲线、各阶段的变形特征及破坏规律。结果表明:炭质板岩中主要有石英、白云母及钠长石,其组成物质完全解理易形成贯穿裂隙;炭质板岩达到最大峰值强度前近于弹性变形。随浸水时间增长,炭质板岩应力应变曲线四阶段逐渐明显,且峰值后应力跌落减缓。主要力学特性表现为:矿物间结构由于水的润滑作用,水楔作用及潜蚀作用遭到破坏。岩石弹性模量、单轴抗压强度显著降低,泊松比、峰值应变略有增大,宏观表现为裂隙角度变缓。  相似文献   
12.
目前对于华北克拉通东部晚中生代花岗质岩石的成因仍存在地幔柱、加厚/拆沉下地壳部分熔融、俯冲板片脱水导致地壳熔融等不同认识。辽西兴城地区晚中生代花岗质岩石主要由二长花岗岩、石英闪长岩、花岗斑岩和石英正长岩组成,岩浆成因锆石U-Pb同位素定年结果显示岩浆活动主要发生于晚侏罗世(156Ma)、早白垩世早期(139Ma)、早白垩世中期(130~125Ma)。岩石地球化学测试分析结果显示岩石属于高钾钙碱性系列且具有富集K、Pb等大离子亲石元素而相对亏损Nb、Ta、Ti等高场强元素等活动陆缘岩浆岩特点,表明辽西地区晚中生代岩浆活动的发生与俯冲作用有关。晚侏罗世-早白垩世早期(156~139Ma)花岗质岩石地球化学特征与I型花岗岩类似,同时具有富集的Hf同位素组成(εHf(t)=-22.70~-18.66)和古老的Hf同位素二阶段模式年龄(tDM2=2387~2767Ma),其初始岩浆可能来源于古老中上地壳的部分熔融;形成于130Ma的花岗质岩石同样具有与I型花岗岩相类似的岩石地球化学特征,但其Hf同位素组成突变为亏损(εHf(t)=+3.64~+6.22、tDM1=537~969Ma),其初始岩浆起源于新元古代新生地壳物质的部分熔融并混入少量亏损地幔物质组分;形成于125Ma的花岗质岩石为碱性A型花岗岩,岩石地球化学特征与其他岩石有所不同,具有负的εHf(t)值(-17.30~-11.56)和相对古老的Hf同位素二阶段年龄(tDM2=1917~2278Ma),初始岩浆可能起源于较为古老的中下地壳部分熔融并有幔源物质的参与。华北克拉通东部形成于160~139Ma的花岗质岩石具有I型、高钾钙碱性、与埃达克质岩石类似的高Sr/Y、低Y含量特征和富集的Hf同位素组成,而形成于130~120Ma的花岗质岩石具有A型、碱性、与典型岛弧岩浆岩类似的岩石地球化学特征和相对亏损的Hf同位素组成,同时晚中生代岩浆活动具有向洋年轻化的特点,表明华北克拉通东部156~139Ma期间可能受到古太平洋板块的持续俯冲作用,而139~130Ma古太平洋俯冲板片开始回撤,130~125Ma进入古太平洋俯冲板片持续回撤导致的强烈区域伸展作用阶段。古太平洋俯冲板片脱水交代岩石圈地幔并形成幔源岩浆,幔源岩浆不断底侵作用于古老/新生地壳使其发生部分熔融为花岗质岩石提供岩浆来源。  相似文献   
13.
谢伟  温守钦  唐铁乔  马鹏程 《地质学报》2020,94(5):1482-1504
大兴安岭广泛分布与岩浆热液作用有关的铅锌多金属矿床,对于该类型矿床中成矿物质的运移沉淀机制和矿物共生组合的研究是揭示成矿机制的关键。本文选取了大兴安岭成矿带东珺典型中高温岩浆热液型铅锌银矿床,通过对该矿床进行详细的野外地质调查和镜下矿物共生组合的研究,结合流体包裹体的显微测温研究,激光拉曼测试和H-O同位素测试,选择了方铅矿、闪锌矿和黄铁矿三种主要金属硫化物进行了热力学平衡的相关计算,依据包裹体显微测温结果选取了473K、513K、553K、593K四个温度截面绘制了热力学Eh-pH、lg[Pb~(2+)]-pH和lg[HS~-]-pH相图。结果显示随着热液成矿过程的不断演化,主要金属硫化物及其共生组合由Py(Ⅰ)→Py(Ⅱ)+Gn(Ⅰ)+Sp(Ⅰ)→Gn(Ⅰ)+Sp(Ⅰ)→Gn(Ⅰ)+Sp(Ⅱ)→Gn(Ⅱ)+Sp(Ⅱ)→Gn(Ⅱ)。流体沸腾、流体混合和水岩反应是东珺铅锌银矿床的主要成矿机制,由此引发的温度、离子活度、Eh和pH的变化对于成矿物质的运移沉淀和硫化物共生组合的形成具有重要的控制作用,东珺矿床热液成矿期主要金属硫化物及其共生组合的形成是多因素协同作用的结果。此研究对于解释大兴安岭典型热液型铅锌多金属矿床的运移沉淀机制和矿物共生组合特征具有重要的指导意义。  相似文献   
14.
戴德求  包海梅  刘爽  尹锋 《岩石学报》2020,36(6):1850-1856
富Al球粒是原始球粒陨石中一种矿物岩石学特征介于富钙铝包体(CAIs)和镁铁质硅酸盐球粒之间的特殊集合体,所以常常认为富Al球粒在认识CAIs和镁铁质硅酸盐球粒形成演化过程中的相互联系具有特殊意义。然而,对富Al球粒的初始物质组成以及形成演化过程一直存在较多争议,而氧同位素组成研究能够对球粒演化和早期星云环境等提供重要的信息。在本文中我们报导了来自Kainsaz(1937年降落于俄罗斯,CO3型)碳质球粒陨石中的2个富Al球粒(编号K1-CH1和K2-CH2)的矿物岩石学和氧同位素组成特征。K1-CH1的矿物组成主要为橄榄石、低钙辉石和富钙长石,K2-CH2为橄榄石和富钙长石。2个球粒中的矿物均具有贫~(16)O同位素组成特征。K1-CH1中矿物的△~(17)O组成基本上位于2个区间:-11.1‰~-8.7‰和-3.9‰~0.4‰;而K2-CH2的△~(17)O介于-6.6‰~-0.6‰之间,且具有从中部至边部升高的趋势。矿物岩石学和氧同位素特征表明,这2个富Al球粒的初始物质组成为富CAIs和镁铁质硅酸盐。在球粒熔融结晶过程中,与贫~(16)O同位素组成(△~(17)O:-8.7‰~-7.8‰)的星云发生了氧同位素交换。球粒形成后,发生迁移进入陨石母体,在相对更贫~(16)O同位素组成(△~(17)O:-0.6‰~0.4‰)的母体中(流体参与)发生变质作用,并再次发生了氧同位素交换。  相似文献   
15.
16.
【目的】研究南海北部湾海域秋季蓝圆鲹与竹筴鱼的摄食生态特征和种间食物竞争。【方法】采用胃含物分析法,对2017年10月北部湾底拖网调查和港口随机取样收集的119尾蓝圆鲹(Decapterusmaruadsi)和198尾竹筴鱼(Trachurus japonicus)胃含物样品进行分析,通过肉眼直接观察或显微镜间接观察胃中残留的饵料,饵料种类鉴定、计数、称重等对食性做定量分析,以估算两种鱼类的营养级和生态位宽度,并利用生态位重叠研究两种鱼类的食物竞争关系。【结果与结论】蓝圆鲹的饵料种类19种(属),以桡足类和小型鱼类为主,优势饵料生物为布氏半棱鳀(Encrasicholinapunctifer);竹筴鱼的饵料种类18种(属),以小型鱼类和浮游甲壳类为主,优势饵料为中国毛虾(Acetes chinensis)。两种鱼类均为游泳动物食性,均存在摄食转换,随着叉长的增长,蓝圆鲹的饵料生物由小型浮游动物为主转变为小型鱼类为主,竹筴鱼的饵料生物由小型鱼类为主转变为以樱虾类和较大鱼类为主。蓝圆鲹和竹筴鱼的空胃率、竹筴鱼的平均胃饱满指数均随个体生长呈显著变化(P0.05),但蓝圆鲹的平均胃饱满指数随个体生长无显著变化(P0.05)。蓝圆鲹和竹筴鱼的营养级分别为3.63和3.40,营养生态位宽度分别为1.70和1.24,生态位重叠系数0.56,表明两种鱼类之间存在一定的食物竞争。  相似文献   
17.
通过把地层格架信息作用于立体层析Fréchet导数矩阵,使得更新后的速度模型呈现出符合地质规律的块状特征.地层格架信息基于立体层析反演中得到的反射点位置进行非规则B样条插值拟合得到,因此在反演中它将会随着反射点位置的更新自然得到更新.与前人提出的保边缘层析算法或多层立体层析算法相比,本文提出的地层格架正则化无需引入混合正则化项或定义某种复杂的混合速度格式,更为直接也更容易实现.理论和实际数据算例证实了该正则化技巧的稳健性和可靠性,能够得到与实际地质构造特征更为一致的地质一致性反演结果.  相似文献   
18.
2016年新疆呼图壁6.2级地震前b值异常特征研究   总被引:1,自引:0,他引:1       下载免费PDF全文
利用2009年以来中国地震台网中心地震编目资料,以2016年新疆呼图壁6.2级地震作为研究对象,采用最大似然法进行b值空间扫描计算,获取震前震中及其邻区地震b值的空间图像。研究结果显示,2016年呼图壁6.2级地震发生在震前显著低b值区域,该异常特征可能反映了地震孕育的应力积累过程,印证了b值的物理意义。  相似文献   
19.
星载微波散射计是获取全球海面风场信息的主要手段, HY-2B卫星散射计的成功发射为全球海面风场数据获取的持续性提供了重要保障。本文利用欧洲中期天气预报中心(European Center for Medium-Range Weather Forecasts, ECMWF)再分析风场数据、热带大气海洋观测计划(Tropical Atmosphere Ocean Array, TAO)和美国国家数据浮标中心(National Data Buoy Center, NDBC)浮标获取的海面风矢量实测数据, 对HY-2B散射计海面风场数据产品的质量进行统计分析。分析表明, HY-2B风场与ECMWF再分析风场对比, 在4~24m·s-1风速区间内, 风速和风向均方根误差(root mean square error, RMSE)分别为1.58m·s-1和15.34°; 与位于开阔海域的TAO浮标数据对比, 风速、风向RMSE分别为1.03m·s-1和14.98°, 可见HY-2B风场能较好地满足业务化应用的精度要求(风速优于2m·s-1, 风向优于20°)。与主要位于近海海域的NDBC浮标对比, HY-2B风场的风速、风向RMSE分别为1.60m·s-1和19.14°, 说明HY-2B散射计同时具备了对近海海域风场的良好观测能力。本文还发现HY-2B风场质量会随风速、地面交轨位置等变化, 为用户更好地使用HY-2B风场产品提供参考。  相似文献   
20.
老金厂金矿床是北山成矿南带最具代表性的中低温岩浆热液型金矿床之一,其规模为中型。依据脉体穿插、矿物共生组合和矿石结构构造等特征,将矿床矿化作用过程划分为石英-黄铁矿阶段(Ⅰ)、石英-含砷黄铁矿-毒砂阶段(Ⅱ)、石英-黄铁矿-多金属硫化物阶段(Ⅲ)和石英-方解石阶段(Ⅳ)。利用电子探针研究了不同成矿阶段载金矿物的元素组成及其分布规律。Ⅰ阶段:黄铁矿以粗粒自形立方体为主,粒度为0.50~1.50 mm,贫As、Au;毒砂含量极少,呈细粒他形。Ⅱ阶段:含砷黄铁矿周围常有大量毒砂产出,含砷黄铁矿多为立方体、五角十二面体,粒度为0.30~1.00 mm,富As、Au;该阶段矿化最为强烈,毒砂主要形成于此时期,多呈棱柱状、柱状、放射状集合体,显示富S亏As特征。Ⅲ阶段:多以黄铁矿-黄铜矿-闪锌矿共生组合脉的形式产出,黄铁矿多呈长条状,以富S、Cu、Zn、Au和贫Fe、As为特征。Ⅳ阶段:矿化作用极弱,毒砂、黄铁矿含量极少,为细粒他形。原位硫同位素组成显示:Ⅰ阶段黄铁矿δ34SV-CDT值为-3.8‰~-2.9‰,均值为-3.3‰;Ⅱ阶段黄铁矿和毒砂δ34SV-CDT值为-4.7‰~2.6‰,均值为-3.3‰;Ⅲ阶段黄铁矿和闪锌矿δ34SV-CDT值主要分布于-1.9‰~1.0‰之间,均值为0.1‰。此3个阶段硫同位素组成反映了成矿期硫主要来源于幔源岩浆,混入了部分地层硫。综合前人研究成果,认为成矿早期至晚期,成矿流体总体上由富S贫As向富As贫S演化。Ⅰ阶段体系处于中性稳定的环境,硫源充足;Ⅱ阶段为贫S富As的高氧逸度环境,由于大气降水对地层的淋滤渗透,混入富As流体,Au可能与As结合形成Au-As络合物,在成矿有利部位富集沉淀;Ⅲ阶段成矿元素种类丰富,体系为富S贫As的弱还原环境,Au很可能与HS-、S-形成络合物进入黄铁矿晶格。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号