首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   2篇
地球物理   11篇
地质学   33篇
海洋学   3篇
自然地理   2篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   3篇
  2016年   2篇
  2015年   5篇
  2014年   3篇
  2013年   1篇
  2011年   3篇
  2010年   3篇
  2009年   5篇
  2008年   2篇
  2007年   4篇
  2006年   5篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1995年   1篇
  1954年   1篇
排序方式: 共有49条查询结果,搜索用时 55 毫秒
11.
In this paper a new seismic design procedure for Reinforced Concrete (R/C) structures is proposed—the Rigid‐Plastic Seismic Design (RPSD) method. This is a design procedure based on Non‐Linear Time‐ History Analysis (NLTHA) for systems expected to perform in the non‐linear range during a lifetime earthquake event. The theoretical background is the Theory of Plasticity (Rigid‐Plastic Structures). Firstly, a collapse mechanism is chosen and the corresponding stress field is made safe outside the regions where plastic behaviour takes place. It is shown that this allows the determination of the required structural strength with respect to a pre‐defined performance parameter using a rigid‐plastic response spectrum, which is characteristic of the ground motion alone. The maximum strength demand at any point is solely dependent on the intensity of the ground motion, which facilitates the task of distributing required strength throughout the structure. Any artificial considerations intended to adjust results according to empirical observations are avoided, which, from a conceptual point of view, is considered to be an advantage over other simplified design procedures for seismic design. The procedure is formulated using a step‐by‐step format followed by a design example of a 4‐storey‐R/C‐plane‐frame. Results are compared with refined NLTHA and found to be extremely encouraging. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
12.
Synseismic loading to very high stresses (>0.5 GPa) and subsequent creep during stress relaxation in the uppermost plastosphere at temperatures of ca. 300–350 °C, near the lower tip of an inferred once seismically active crustal scale fault, was proposed based on peculiar microstructures identified in rocks exposed over >100 km2 in the Sesia Zone, European Western Alps. Here we discuss the conspicuous and highly heterogeneous microstructural record of quartz in disseminated small-scale shear zones. Sub-basal deformation lamellae and arrays of elongate subgrains on the TEM-scale indicate an early stage of glide-controlled deformation at high stresses. Distributed brittle failure is indicated by healed microcracks. Very fine-grained recrystallised aggregates with a pronounced crystallographic preferred orientation reflect intense plastic flow by dislocation creep. Locally, a fine-grained foam microstructure indicates a final stage of static grain growth at low differential stress. For the previously inferred peak stresses of about 0.5 GPa and given temperatures, initial strain rates on the order of 10−10 s−1 are predicted by available flow laws for dislocation creep of quartz. We emphasise the importance of short-term non-steady state deformation in the uppermost plastosphere underlying seismically active upper crust. The related heterogeneous record of quartz is governed by the local stress history at constant temperature.  相似文献   
13.
A three-dimensional method of analysis is presented for the seismic response of structures constructed on pile foundations. An analysis is formulated in the time domain and the effects of material nonlinearity of soil on the seismic response are investigated. A subsystem model consisting of a structure subsystem and a pile-foundation subsystem is used. Seismic response of the system is found using a successive-coupling incremental solution scheme. Both subsystems are assumed to be coupled at each time step. Material nonlinearity is accounted for by incorporating an advanced plasticity-based soil model, HiSS, in the finite element formulation. Both single piles and pile groups are considered and the effects of kinematic and inertial interaction on seismic response are investigated while considering harmonic and transient excitations. It is seen that nonlinearity significantly affects seismic response of pile foundations as well as that of structures. Effects of nonlinearity on response are dependent on the frequency of excitation with nonlinearity causing an increase in response at low frequencies of excitation.  相似文献   
14.
15.
A critical state model for overconsolidated structured clays   总被引:1,自引:0,他引:1  
This paper presents a generalised critical state model with the bounding surface theory for simulating the stress–strain behaviour of overconsolidated structured clays. The model is formulated based on the framework of the Structured Cam Clay (SCC) model and is designated as the Modified Structured Cam Clay with Bounding Surface Theory (MSCC-B) model. The hardening and destructuring processes for structured clays in the overconsolidated state can be described by the proposed model. The image stress point defined by the radial mapping rule is used to determine the plastic hardening modulus, which varies along loading paths. A new proposed parameter h, which depends on the material characteristics, is introduced into the plastic hardening modulus equation to take the soil behaviour into account in the overconsolidated state. The MSCC-B model is finally evaluated in light of the model performance by comparisons with the measured data of both naturally and artificially structured clays under compression and shearing tests. From the comparisons, it is found that the MSCC-B model gives reasonable good simulations of mechanical response of structured clays in both drained and undrained conditions. With its simplicity and performance, the MSCC-B model is regarded as a practical geotechnical model for implementation in numerical analysis.  相似文献   
16.
17.
The yield vertex non-coaxial model is different from classical elastoplastic models, in that there is an additional plastic strain rate tangential to yield surfaces, as well as the plastic strain rate normal to yield surfaces, when orientations of principal stress change. This feature raises concerns on its finite element implementations. In nonlinear finite element numerical iterations, a large tangential plastic strain rate is likely to make the trial total strain rate direct inside a yield surface, which entails convergence difficulty. Some modifications are introduced on the non-coaxial model itself to make numerical convergence easier in the work published in Yang and Yu (2010) [20]. This paper is an extension of the previous work. Instead of modifying the non-coaxial model itself, this paper concerns the use of finite element explicit procedure, which is suitable for highly discontinuous problems. The simulations of shallow foundation load-settlement responses indicate that the finite element explicit procedure, assisted with a robust and explicit automatic substepping integration scheme of the non-coaxial model, does not encounter numerical difficulty. In addition, the overall trends of implicit and explicit simulations are similar.  相似文献   
18.
In this paper, we propose an anisotropic plastic damage model for semi-brittle geomaterials based on a discrete thermodynamic approach. The macroscopic plastic deformation is generated by frictional sliding of weakness planes. The evolution of damage is related to growth of such weakness planes. The local frictional sliding in each family of weakness planes is described by a non-associated plastic model taking into account material softening and volumetric dilatancy. The damage evolution is coupled with plastic deformation and modelled by an isotropic damage criterion. The proposed model is applied to modelling mechanical responses of typical sandstone under different loading paths. There is good agreement between numerical predictions and experimental data. Further, the anisotropic distributions of plastic deformation and induced damage are analysed and discussed.  相似文献   
19.
Design of shallow foundations relies on bearing capacity values calculated using procedures that are based in part on solutions obtained using the method of characteristics, which assumes a soil following an associated flow rule. In this paper, we use the finite element method to determine the vertical bearing capacity of strip and circular footings resting on a sand layer. Analyses were performed using an elastic–perfectly plastic Mohr–Coulomb constitutive model. To investigate the effect of dilatancy angle on the footing bearing capacity, two series of analyses were performed, one using an associated flow rule and one using a non-associated flow rule. The study focuses on the values of the bearing capacity factors Nq and Nγ and of the shape factors sq and sγ for circular footings. Relationships for these factors that are valid for realistic pairs of friction angle and dilatancy angle values are also proposed.  相似文献   
20.
A geological survey carried out in the Yaoundé (Cameroon) region has revealed the presence of homogeneous clayey laterite in the upper part of a laterite cover on interfluves, thickest on hills (780–800 m altitude) where ferricrete is absent, and clayey heterogeneous hydromorphic material in valleys. We present in this paper the physical, mineralogical and geochemical properties of these occurrences and discuss their potential as raw material for pottery, manufacture of bricks and tiles. These clayey raw materials are mostly made up of fine particles (ranging from 55 to 60% clay + silt in the clayey laterite, more than 70% clay + silt in the clayey hydromorphic material). Their chemical composition is characterized by silica (<60% SiO2), alumina (<35% Al2O3) and iron (ranging from 3 to 14% Fe2O3). Their main clay minerals are disorganized and poorly crystallized kaolinites. The average limits of liquidity (44.56% versus 91.58%) and limits of plasticity (22.4 versus 45.93) revealed that clayey hydromorphic material has the greatest plasticity. The studied raw materials are suitable for making pottery as well as the manufacture of bricks and tiles. However, the high iron content in the clayey laterite (between 11 and 12% Fe2O3) prevents their efficient use in the manufacture of ceramics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号