首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6669篇
  免费   312篇
  国内免费   25篇
测绘学   201篇
大气科学   585篇
地球物理   1561篇
地质学   3038篇
海洋学   244篇
天文学   895篇
综合类   15篇
自然地理   467篇
  2023年   37篇
  2022年   16篇
  2021年   59篇
  2020年   129篇
  2019年   79篇
  2018年   207篇
  2017年   304篇
  2016年   322篇
  2015年   224篇
  2014年   284篇
  2013年   445篇
  2012年   249篇
  2011年   369篇
  2010年   265篇
  2009年   394篇
  2008年   302篇
  2007年   381篇
  2006年   287篇
  2005年   314篇
  2004年   241篇
  2003年   239篇
  2002年   195篇
  2001年   177篇
  2000年   130篇
  1999年   233篇
  1998年   99篇
  1997年   78篇
  1996年   77篇
  1995年   55篇
  1994年   62篇
  1993年   61篇
  1992年   58篇
  1991年   34篇
  1990年   44篇
  1989年   48篇
  1988年   24篇
  1987年   34篇
  1986年   40篇
  1985年   24篇
  1984年   41篇
  1983年   21篇
  1982年   37篇
  1981年   34篇
  1980年   37篇
  1979年   33篇
  1978年   28篇
  1977年   16篇
  1976年   26篇
  1974年   19篇
  1973年   31篇
排序方式: 共有7006条查询结果,搜索用时 203 毫秒
101.
102.
Awareness and perception of risk are among the most crucial steps in the process of taking precautions at individual level for various hazards. In this study, we investigated the factors affecting better knowledge and greater risk perception about earthquakes among residents of Istanbul. A field survey was carried out, and a total of 1,123 people were interviewed in two districts of Istanbul with different seismic risk levels and from three (low, moderate and high) socio-economic levels (SEL). The findings showed that although the level of knowledge regarding earthquakes and preparedness for them was promising, it could be improved. The results indicated that future preparedness programmes should target people with lower educational and socio-economic levels. The media were the leading source of information among the respondents. Location of the home was a strong influence on individuals having above average earthquake knowledge and even more on high risk perception. Socio-economic parameters (educational level, economic status, SEL of the sub-district and tenure of the home), gender and attitude score were other factors influencing greater risk perception with regard to earthquakes.  相似文献   
103.
The dynamics of granitic landscapes are modulated by bimodal weathering, which produces patchy granular soils and expanses of bare rock ranging from meter-scale boulders to mountain-scale domes. We used terrain analysis and with cosmogenic nuclide measurements of erosion rates to quantitatively explore Wahrhaftig’s decades-old hypothesis for the development of “stepped topography” by differential weathering of bare and soil-mantled granite. According to Wahrhaftig’s hypothesis, bare granite weathers slower than soil-mantled granite; thus random erosional exposure of bare rock leads to an alternating sequence of steep, slowly weathering bedrock “steps” and gently sloped, but rapidly weathering, soil-mantled “treads.” Our investigation focused on the terrain surrounding the Southern Sierra Critical Zone Observatory (CZO), which is underlain by granitic bedrock and lies outside the limits of recent glaciation, in the heart of the stepped topography described by Wahrhaftig. Our digital terrain analysis confirms that steep steps often grade into gentle treads, consistent with Wahrhaftig’s hypothesis. However, we observe a mix-and-match of soil and bare rock on treads and steps, contrary to one of the hypothesis’ major underpinnings – that bare rock should be much more common on steps than on treads. Moreover, the data show that bare rock is not as common as expected at step tops; Wahrhaftig’s hypothesis dictates that step tops should act as slowly eroding base levels for the treads above them. The data indicate that, within each landscape class (i.e., the steps and treads), bare rock erodes more slowly than surrounding soil. This suggests that the coupling between soil production and denudation in granitic landscapes harbors a tipping point wherein erosion rates decrease when soils are stripped to bedrock. Although broadly consistent with the differential weathering invoked by Wahrhaftig, the data also show that steps are eroding faster than treads, undermining Wahrhaftig’s explanation for the origins of the steps. The revised interpretation proposed here is that the landscape evolves by back-wearing of steps in addition to differential erosion due to differences in weathering of bare and soil-mantled granite.  相似文献   
104.
IFKIS-Hydro is an information and warning system for hydrological hazards in small- and medium-scale catchments. The system collects data such as weather forecasts, precipitation measurements, water level gauges, discharge simulations and local observations of event-specific phenomena. In addition, IFKIS-Hydro incorporates a web-based information platform, which serves as a central hub for the submission and overview of data. Special emphasis is given to local information. This is accomplished particularly by human observers. In medium-scale catchments, discharge forecast models have an increasing importance in providing valuable information. IFKIS-Hydro was developed in several test regions in Switzerland and the first results of its application are available now. The system is constantly extended to additional regions and may become the standard for warning systems in smaller catchments in Switzerland.  相似文献   
105.
Flat and steep subduction are end-member modes of oceanic subduction zones with flat subduction occurring at about 10% of the modern convergent margins and mainly around the Pacific. Continental (margin) subduction normally follows oceanic subduction with the remarkable event of formation and exhumation of high- to ultrahigh-pressure (HP–UHP) metamorphic rocks in the continental subduction/collision zones. We used 2D thermo-mechanical numerical models to study the contrasting subduction/collision styles as well as the formation and exhumation of HP–UHP rocks in both flat and steep subduction modes. In the reference flat subduction model, the two plates are highly coupled and only HP metamorphic rocks are formed and exhumed. In contrast, the two plates are less coupled and UHP rocks are formed and exhumed in the reference steep subduction model. In addition, faster convergence of the reference flat subduction model produces extrusion of UHP rocks. Slower convergence of the reference flat subduction model results in two-sided subduction/collision. The higher/lower convergence velocities of the reference steep subduction model can both produce exhumation of UHP rocks. A comparison of our numerical results with the Himalayan collisional belt suggests two possible scenarios: (1) A spatially differential subduction/collision model, which indicates that steep subduction dominates in the western Himalaya, while flat subduction dominates in the extensional central Himalaya; and (2) A temporally differential subduction/collision model, which favors earlier continental plate (flat) subduction with high convergence velocity in the western Himalaya, and later (flat) subduction with relatively low convergence velocity in the central Himalaya.  相似文献   
106.
The rise of an initially horizontal, buoyant cylinder of fluid through a denser fluid at low Reynolds number is used to look at the ascent of strongly tilted mantle plumes through the mantle. Such ascents are characterized by (1) the growth of instabilities and (2) the development of a thermal wake downstream. Three-dimensional numerical experiments were carried out to examine these features. An hybrid particle-in-cell finite element method was used to look at the rise of non-diffusing cylinders and, a standard finite element method was used to look at the diffusing case. First the experiments show that the timescale of the fastest growing instability vary with the Rayleigh number and the viscosity ratio. In particular the growth rate decreases as the Rayleigh number decreases, in agreement with our analysis of the laboratory experiments of Kerr et al. (2008). Second the experiments show that the length of the thermal wake increases with the Rayleigh number but the change in viscosity has almost no influence on the wake length. Applied to strongly tilted mantle plumes we conclude that such plumes cannot be unstable given the plume timescales. We also discuss the application of this conclusion to weakly tilted plumes. Besides, this study allows to predict that mantle plumes are unlikely to have developed a significant thermal wake by the time they reach the surface. Finally, the resolution that is required to allow for the growth of mantle plume tails by combined diffusion and thermal entrainment is shown to represent a challenge for the large scale mantle convection simulations.  相似文献   
107.
Rapid changes in spring water quality in karst areas due to rapid recharge of bacterially contaminated water are a major concern for drinking water suppliers and users. The main objective of this study was to use field experiments with fecal indicators to verify the vulnerability of a karst spring to pathogens, as determined by using a numerical modeling approach. The groundwater modeling was based on linear storage models that can be used to simulate karst water flow. The vulnerability of the karst groundwater is estimated using such models to calculate criteria that influence the likelihood of spring water being affected by microbial contamination. Specifically, the temporal variation in the vulnerability, depending on rainfall events and overall recharge conditions, can be assessed and quantified using the dynamic vulnerability index (DVI). DVI corresponds to the ratio of conduit to diffuse flow contributions to spring discharge. To evaluate model performance with respect to predicted vulnerability, samples from a spring were analyzed for Escherichia coli, enterococci, Clostridium perfringens, and heterotrophic plate count bacteria during and after several rainfall events. DVI was shown to be an indication of the risk of fecal contamination of spring water with sufficient accuracy to be used in drinking water management. We conclude that numerical models are a useful tool for evaluating the vulnerability of karst systems to pathogens under varying recharge conditions  相似文献   
108.
We have estimated the variations in the atmospheric electrostatic field (AEF, E Z(0)) strength in the surface layer caused by variations in conductivity due to radon influences, cosmic ray intensity, changes in the balance of light and heavy ions during sunset and sunrise, and under the effect of the ionospheric electric current potential on the AEF potential. It is shown that the air conductivity varies due to ionization under the effect of radon emanations and is determined by the radon exhalation and turbulent diffusion of the surface air layer, while the cosmic ray intensity affects the surface air conductivity through changes in the ion recombination conditions. A decrease in the air conductivity due to a decrease in the cosmic ray intensity (Forbush decrease) also decreases E Z(0), while a decrease in radon fluxes results in an increase in E Z(0). We have estimated the effect of illumination conditions on the AEF due to variations in the relative concentration of heavy and light ions under the influence of photodetachment and photoattachment processes. The work has been done on the basis of data received from the Paratunka observatory (Kamchatka).  相似文献   
109.
We report a new model of the upper mantle structure beneath Italy obtained by means of P-wave teleseismic tomography. Besides the recent and remarkable development of the Italian Seismic Network, a high model resolution has been achieved improving the inversion method upon the ACH method used in previous investigations and picking high quality arrival times with the Multi-Channel Cross-Correlation technique. The finer details of our Vp model yield new insights into the heterogeneous structure of the Adria continental lithosphere involved in the collision between the Africa and Europe plates. A wide low Vp anomaly located in the northern Adria mantle, facing the Alpine high Vp slab, supports the idea that the Adria lithosphere has been hydrated and thinned during the Alpine subduction. We argue that this mantle softening may have played a key role in favoring the subsequent delamination of the Adria lithosphere in the northern Apennines. We hypothesize that delamination of continental lithosphere previously thinned in a back-arc setting may be considered a key process to favor subduction polarity reversal and recycling of continental material into the mantle circulation. Conversely, in the central-southern Apennines, the velocity structure is consistent with the existence of a deeper oceanic slab that flattens at the base of the upper mantle, in agreement with the widely accepted geodynamic evolution of the central Mediterranean by slab retreat and back-arc spreading. The oceanic slab is discontinuously detached from the surface plate, suggesting a different structure of the Adria lithosphere, which resists subduction instead of favoring delamination.  相似文献   
110.
The Mechanical Coupling of Fluid-Filled Granular Material Under Shear   总被引:1,自引:0,他引:1  
The coupled mechanics of fluid-filled granular media controls the physics of many Earth systems, for example saturated soils, fault gouge, and landslide shear zones. It is well established that when the pore fluid pressure rises, the shear resistance of fluid-filled granular systems decreases, and, as a result, catastrophic events such as soil liquefaction, earthquakes, and accelerating landslides may be triggered. Alternatively, when the pore pressure drops, the shear resistance of these geosystems increases. Despite the great importance of the coupled mechanics of grain–fluid systems, the basic physics that controls this coupling is far from understood. Fundamental questions that must be addressed include: what are the processes that control pore fluid pressurization and depressurization in response to deformation of the granular skeleton? and how do variations of pore pressure affect the mechanical strength of the grains skeleton? To answer these questions, a formulation for the pore fluid pressure and flow has been developed from mass and momentum conservation, and is coupled with a granular dynamics algorithm that solves the grain dynamics, to form a fully coupled model. The pore fluid formulation reveals that the evolution of pore pressure obeys viscoelastic rheology in response to pore space variations. Under undrained conditions elastic-like behavior dominates and leads to a linear relationship between pore pressure and overall volumetric strain. Viscous-like behavior dominates under well-drained conditions and leads to a linear relationship between pore pressure and volumetric strain rate. Numerical simulations reveal the possibility of liquefaction under drained and initially over-compacted conditions, which were often believed to be resistant to liquefaction. Under such conditions liquefaction occurs during short compactive phases that punctuate the overall dilative trend. In addition, the previously recognized generation of elevated pore pressure under undrained compactive conditions is observed. Simulations also show that during liquefaction events stress chains are detached, the external load becomes completely supported by the pressurized pore fluid, and shear resistance vanishes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号