首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6669篇
  免费   312篇
  国内免费   25篇
测绘学   201篇
大气科学   585篇
地球物理   1561篇
地质学   3038篇
海洋学   244篇
天文学   895篇
综合类   15篇
自然地理   467篇
  2023年   37篇
  2022年   16篇
  2021年   59篇
  2020年   129篇
  2019年   79篇
  2018年   207篇
  2017年   304篇
  2016年   322篇
  2015年   224篇
  2014年   284篇
  2013年   445篇
  2012年   249篇
  2011年   369篇
  2010年   265篇
  2009年   394篇
  2008年   302篇
  2007年   381篇
  2006年   287篇
  2005年   314篇
  2004年   241篇
  2003年   239篇
  2002年   195篇
  2001年   177篇
  2000年   130篇
  1999年   233篇
  1998年   99篇
  1997年   78篇
  1996年   77篇
  1995年   55篇
  1994年   62篇
  1993年   61篇
  1992年   58篇
  1991年   34篇
  1990年   44篇
  1989年   48篇
  1988年   24篇
  1987年   34篇
  1986年   40篇
  1985年   24篇
  1984年   41篇
  1983年   21篇
  1982年   37篇
  1981年   34篇
  1980年   37篇
  1979年   33篇
  1978年   28篇
  1977年   16篇
  1976年   26篇
  1974年   19篇
  1973年   31篇
排序方式: 共有7006条查询结果,搜索用时 15 毫秒
91.
The effects of deformation on radiogenic argon (40Ar) retentivity in mica are described from high pressure experiments performed on rock samples of peraluminous granite containing euhedral muscovite and biotite. Cylindrical cores, ∼15 mm in length and 6.25 mm in diameter, were drilled from granite collected from the South Armorican Massif in northwestern France, loaded into gold capsules, and weld-sealed in the presence of excess water. The samples were deformed at a pressure of 10 kb and a temperature of 600 °C over a period 29 of hours within a solid medium assembly in a Griggs-type triaxial hydraulic deformation apparatus. Overall shortening in the experiments was approximately 10%. Transmitted light and secondary and backscattered electron imaging of the deformed granite samples reveals evidence of induced defects and for significant physical grain size reduction by kinking, cracking, and grain segmentation of the micas.Infrared (IR) laser (CO2) heating of individual 1.5-2.5 mm diameter grains of muscovite and biotite separated from the undeformed granite yield well-defined 40Ar/39Ar plateau ages of 311 ± 2 Ma (2σ). Identical experiments on single grains separated from the experimentally deformed granite yield results indicating 40Ar loss of 0-35% in muscovite and 2-3% 40Ar loss in biotite. Intragrain in situ ultraviolet (UV) laser ablation 40Ar/39Ar ages (±4-10%, 1σ) of deformed muscovites range from 309 ± 13 to 264 ± 7 Ma, consistent with 0-16% 40Ar loss relative to the undeformed muscovite. The in situ UV laser ablation 40Ar/39Ar ages of deformed biotite vary from 301 to 217 Ma, consistent with up to 32% 40Ar loss. No spatial correlation is observed between in situ40Ar/39Ar age and position within individual grains. Using available argon diffusion data for muscovite the observed 40Ar loss in the experimentally treated muscovite can be utilized to predict average 40Ar diffusion dimensions. Maximum 40Ar/39Ar ages obtained by UV laser ablation overlap those of the undeformed muscovite, indicating argon loss of <1% and an average effective grain radius for 40Ar diffusion ?700 μm. The UV laser ablation and IR laser incremental 40Ar/39Ar ages indicating 40Ar loss of 16% and 35%, respectively, are consistent with an average diffusion radius ?100 μm. These results support a hypothesis of grain-scale 40Ar diffusion distances in undeformed mica and a heterogeneous mechanical reduction in the intragrain effective diffusion length scale for 40Ar in deformed mica. Reduction in the effective diffusion length scale in naturally deformed samples occurs most probably through production of mesoscopic and submicroscopic defects such as, e.g., stacking faults. A network of interconnected defects, continuously forming and annealing during dynamic deformation likely plays an important role in controlling both 40Ar retention and intragrain distribution in deformed mica. Intragrain 40Ar/39Ar ages, when combined with estimates of diffusion kinetics and distances, may provide a means of establishing thermochronological histories from individual micas.  相似文献   
92.
Eucrites are basaltic meteorites that cooled rapidly but are in many instances thermally metamorphosed and impact brecciated. The exact timing of these events remains unclear. In this study, Ni isotopic compositions and Fe/Ni elemental ratios are presented for two non-cumulate eucrites, Bouvante and Juvinas, including mineral separates from the latter. The samples are characterized by variable, well-resolved 60Ni-excesses consistent with the former presence of live 60Fe (t1/2 = 2.62 Ma) at the time of eucrite crystallization. A significant fraction of Ni with a terrestrial-like composition appears to be surface correlated. This Ni may be the product of terrestrial contamination or was introduced by a chondritic impactor during brecciation. Altogether, the data provide evidence for a complex and probably multi-stage history of Fe and/or Ni redistribution, which impedes the interpretation of the chronological data.  相似文献   
93.
M.-A. Kaczmarek  S.M. Reddy  N.E. Timms 《Lithos》2011,127(3-4):414-426
Magmatic zircons within two sheared gabbroic dykes from the peridotitic massif of Lanzo (Western-Alps, Italy) revealed evolution of deformation from crystal plasticity to rigid body rotation during shear zone evolution. This is the first time that multiple zircon grains have been analysed in a kinematic context in a shear zone. Zircon grains recorded crystal plastic deformation activating the commonly inferred <100>{001} and <001>{100} glide-systems to the newly identified <001>{110} glide-system. The exact selection of glide-system could be dependant of deformation conditions such as pressure, temperature, and strain rate. Moreover, the activation of one or several glide-systems within a single grain could be favoured by the primary orientation of the grains combined with a high strain rate. In these sheared gabbros, the deformation mechanisms evolve from plastic deformation at low strain rate conditions to increase strain, strain softening and localisation of deformation. The progressive shear zone development and the softening of the matrix relative to the zircon has lead to a switch from crystal-plasticity to rigid body rotation of zircon. The zircon grains rigid body rotation involved that their long axes became parallel to the lineation of the shear zone, causing reorientation and dispersion of the misorientation axes away from kinematic Y.  相似文献   
94.
Existing methods for black carbon (BC) quantification measure different parts of the BC continuum, which complicates the calculation of a global BC budget. Benzenepolycarboxylic acids (BPCA) are used as molecular markers to quantify and characterize BC in soils and sediments using gas chromatography for BPCA separation (GC-BPCA). Recently, this method was refined for BC analysis in seawater using high performance liquid chromatography (LC-BPCA), which omits the cleaning steps and derivatization necessary in GC analysis. As yet it is not clear whether the two analytical methods yield similar results. Here we apply both methods to a suite of laboratory produced charcoals derived from wood and grass. We found systematically lower total BPCA-C contents and larger analytical variability for all tested charcoals when using GC-BPCA compared to LC-BPCA, the latter giving 1.5 ± 0.3 times higher yields for the charcoal samples formed at 275-700 °C. At lower and higher pyrolysis temperatures the differences between the two analytical methods were larger. The main reason for the differences between the two methods is the loss of BPCA during sample preparation for GC analysis. We propose a correction factor of 1.5 to account for at least part of these losses. No qualitative biases, i.e. towards more or less functionalized BPCAs, were observed between the two methods. The relative contribution of mellitic acid C to total BPCA-C, a measure for the degree of condensation of BC, was the same in the two analytical techniques. Qualitative differences between wood and grass charcoals as detected by both methods were small.  相似文献   
95.
Two shallow water late Cenomanian to early Turonian sequences of NE Egypt have been investigated to evaluate the response to OAE2. Age control based on calcareous nannoplankton, planktic foraminifera and ammonite biostratigraphies integrated with δ13C stratigraphy is relatively good despite low diversity and sporadic occurrences. Planktic and benthic foraminiferal faunas are characterized by dysoxic, brackish and mesotrophic conditions, as indicated by low species diversity, low oxygen and low salinity tolerant planktic and benthic species, along with oyster-rich limestone layers. In these subtidal to inner neritic environments the OAE2 δ13C excursion appears comparable and coeval to that of open marine environments. However, in contrast to open marine environments where anoxic conditions begin after the first δ13C peak and end at or near the Cenomanian–Turonian boundary, in shallow coastal environments anoxic conditions do not appear until the early Turonian. This delay in anoxia appears to be related to the sea-level transgression that reached its maximum in the early Turonian, as observed in shallow water sections from Egypt to Morocco.  相似文献   
96.
Since 1994, the Rumuruti (R) chondrites have been recognized as a new, well-established chondrite group differing from carbonaceous, ordinary, and enstatite chondrites. The first R chondrite, Carlisle Lakes, was found in Australia in 1977. Meanwhile, the number has increased to 107 (December, 2010). This group is named after the Rumuruti meteorite, the first and so far the only R chondrite fall. Most of the R chondrites are breccias containing a variety of different clasts embedded in a clastic matrix. Some textural and mineralogical characteristics can be summarized as follows: (a) the chondrule abundance in large fragments and in unbrecciated rocks is ∼35–50 vol%; (b) Ca,Al-rich inclusions are rare; (c) the olivine abundance is typically 65–78 vol%; (d) the mean chondrule diameter is ∼400 μm; (e) in unequilibrated R chondrites, low-Ca pyroxene is dominating, whereas in equilibrated R chondrites it is Ca-rich pyroxene; (f) the typical olivine in a metamorphosed lithology is ∼Fa38–40; (g) matrix olivine in unequilibrated, type 3 fragments and rocks has much higher Fa (∼45–60 mol%) compared to matrix olivines in type 4–6 lithologies (∼Fa38–41); (h) spinels have a high TiO2 of ∼5 wt%; (i) abundant different noble metal-bearing phases (metals, sulfides, tellurides, arsenides) occur. The exception is the metamorphosed, type 5/6 R chondrite La Paz Icefield 04840 which contains hornblende, phlogopite, and Ca-poor pyroxene, the latter phase typically occurring in low-grade metamorphosed R chondrites only.In bulk composition, R chondrites have some affinity to ordinary chondrites: (a) the absence of significant depletions in Mn and Na in R chondrites and ordinary chondrites is an important feature to distinguish these groups from carbonaceous chondrites; (b) total Fe (∼24 wt%) of R chondrites is between those of H and L chondrites (27.1 and 21.6 wt%, respectively); (c) the average CI/Mg-normalized lithophile element abundances are ∼0.95 × CI, which is lower than those for carbonaceous chondrites (≥1.0 × CI) and slightly higher than those for ordinary chondrites (∼0.9 × CI); (d) trace element concentrations such as Zn (∼150 ppm) and Se (∼15 ppm) are much higher than in ordinary chondrites; (e) the whole rock Δ17O of ∼2.7 for R chondrites is the highest among all meteorite groups, and the mean oxygen isotope composition is δ17O = 5.36 ± 0.43, δ18O = 5.07 ± 0.86, Δ17O = +2.72 ± 0.31; (f) noble gas cosmic ray exposure ages of R chondrites range between ∼0.1 and 70 Ma. More than half of the R chondrites analyzed for noble gases contain implanted solar wind and, thus, are regolith breccias. The 43 R chondrites from Northern Africa analyzed so far for noble gases seem to represent at least 16 falls. Although the data base is still scarce, the data hint at a major collision event on the R chondrite parent body between 15 and 25 Ma ago.  相似文献   
97.
Suspended solids found in porewaters obtained in waterlogged soil sequences that included representative laterite–podzol transitions, associated brooks and major rivers of the Rio Negro watershed (Brazil) were studied using electron paramagnetic resonance (EPR) and Fourier-transform infrared spectroscopies. The main goal was to ascertain sources and track the evolution of suspended matter using a ubiquitous chemical species, FeIII complexed to organic matter (FeOM). Three size fractions were separated by tangential-flow (ultra)filtration: particulate (> 0.2 μm), dense (P) and light (Ps), and colloidal (5 kD < Col. < 0.2 μm) fractions. Quantitative results were acquired for Col. and Ps fractions which are predominantly organic in nature.FeOM concentration (in ‰ dry weight) was determined to be relatively low in suspended solids found in black waters from podzol porewaters and brooks whereas in the main rivers it was several times higher. FeOM concentrations were also correlated with Fe(II)/Fe(III) ratios in solution; these ratios were high in podzol porewaters and low in the rivers. Considering that organic complexation of Fe(II) is minor when compared to that of Fe(III), two interpretations were proposed to account for the above observation. First, [FeOM] was assumed to be distributed along a mixing line, with the clear waters from laterites and the black waters from podzols being its end-members. Consequently, [FeOM] can be used to trace the source of suspended material. Second, dissolved Fe(II) from podzol areas was considered to be progressively oxidized as pore waters move towards the mainstream. According to this mechanism, iron is complexed by organic matter or precipitated as oxides, thus producing an evolution of colloidal matter. As a result of these mechanisms' action, both the high production of Fe(II) and organic matter at the waterlogged podzol–laterite transition areas are major factors affecting iron export in the Rio Negro watershed.  相似文献   
98.
We have performed experiments to evaluate Au solubility in natural, water-saturated basaltic melts as a function of oxygen fugacity. Experiments were carried out at 1000 °C and 200 MPa, and oxygen fugacity was controlled at the fayalite-magnetite-quartz (FMQ) oxygen fugacity buffer and FMQ + 4. All experiments were saturated with a metal-chloride aqueous solution loaded initially as a 10 wt% NaCl eq. fluid. The stable phase assemblage at FMQ consists of basalt melt, olivine, clinopyroxene, a single-phase aqueous fluid, and metallic Au. The stable phase assemblage at FMQ + 4 consists of basalt melt, clinopyroxene, magnetite-spinel solid solution, a single-phase aqueous fluid, and metallic Au. Silicate glasses (i.e., quenched melt) and their contained crystalline material were analyzed by using both electron probe microanalysis (EPMA) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Measured Au concentrations in the quenched melt range from 4.8 μg g−1 to 0.64 μg g−1 at FMQ + 4, and 0.54 μg g−1 to 0.1 μg g−1 at FMQ. The measured solubility of Au in olivine and clinopyroxene was consistently below the LA-ICP-MS limit of detection (i.e., 0.1 μg g−1). These melt solubility data place important limitations on the dissolved Au content of water-saturated, Cl- and S-bearing basaltic liquids at geologically relevant fO2 values. The new data are compared to published, experimentally-determined values for Au solubility in dry and hydrous silicate liquids spanning the compositional range from basalt to rhyolite, and the effects of melt composition, oxygen fugacity, pressure and temperature are discussed.  相似文献   
99.
A scientific challenge is to assess the role of Deccan volcanism in the Cretaceous-Tertiary boundary (KTB) mass extinction. Here we report on the stratigraphy and biologic effects of Deccan volcanism in eleven deep wells from the Krishna-Godavari (K-G) Basin, Andhra Pradesh, India. In these wells, two phases of Deccan volcanism record the world’s largest and longest lava mega-flows interbedded in marine sediments in the K-G Basin about 1500 km from the main Deccan volcanic province. The main phase-2 eruptions (∼80% of total Deccan Traps) began in C29r and ended at or near the KTB, an interval that spans planktic foraminiferal zones CF1–CF2 and most of the nannofossil Micula prinsii zone, and is correlative with the rapid global warming and subsequent cooling near the end of the Maastrichtian. The mass extinction began in phase-2 preceding the first of four mega-flows. Planktic foraminifera suffered a 50% drop in species richness. Survivors suffered another 50% drop after the first mega-flow, leaving just 7 to 8 survivor species. No recovery occurred between the next three mega-flows and the mass extinction was complete with the last phase-2 mega-flow at the KTB. The mass extinction was likely the consequence of rapid and massive volcanic CO2 and SO2 gas emissions, leading to high continental weathering rates, global warming, cooling, acid rains, ocean acidification and a carbon crisis in the marine environment.  相似文献   
100.
The use of cement and concrete as fracture grouting or as tunnel seals in a geological disposal facility for radioactive wastes creates potential issues concerning chemical reactivity. From a long-term safety perspective, it is desirable to be able model these interactions and changes quantitatively. The ‘Long-term Cement Studies’ (LCS) project was formulated with an emphasis on in situ field experiments with more realistic boundary conditions and longer time scales compared with former experiments. As part of the project programme, a modelling inter-comparison has been conducted, involving the modelling of two experiments describing cement hydration on one hand and cement-rock reaction on the other, with teams representing the NDA (UK), Posiva (Finland), and JAEA (Japan).This modelling exercise showed that the dominant reaction pathways in the two experiments are fairly well understood and are consistent between the different modelling teams, although significant differences existed amongst the precise parameterisation (e.g. reactive surface areas, dependences of rate upon pH, types of secondary minerals), and in some instances, processes (e.g. partition of alkali elements between solids and liquid during cement hydration; kinetic models of cement hydration). It was not conclusive if certain processes such as surface complexation (preferred by some modellers, but not by others) played a role in the cement-rock experiment or not. These processes appear to be more relevant at early times in the experiment and the evolution at longer timescales was not affected. The observed permeability profile with time could not be matched. The fact that no secondary minerals could be observed and that the precipitated mass calculated during the simulations is minor might suggest that the permeability reduction does not have a chemical origin, although a small amount of precipitates at pore throats could have a large impact on permeability.The modelling exercises showed that there is an interest in keeping the numerical models as simple as possible and trying to obtain a reasonable fit with a minimum of processes, minerals and parameters. However, up-scaling processes and model parameterisation to the timescales appropriate to repository safety assessment are of considerable concern. Future modelling exercises of this type should focus on a suitable natural or industrial analogue that might aid assessing mineral-fluid reactions at these longer timescales.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号