首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1860篇
  免费   482篇
  国内免费   1349篇
测绘学   32篇
大气科学   2390篇
地球物理   105篇
地质学   112篇
海洋学   743篇
综合类   61篇
自然地理   248篇
  2024年   23篇
  2023年   66篇
  2022年   70篇
  2021年   84篇
  2020年   101篇
  2019年   90篇
  2018年   75篇
  2017年   85篇
  2016年   83篇
  2015年   84篇
  2014年   174篇
  2013年   156篇
  2012年   130篇
  2011年   164篇
  2010年   185篇
  2009年   171篇
  2008年   150篇
  2007年   192篇
  2006年   163篇
  2005年   148篇
  2004年   112篇
  2003年   102篇
  2002年   96篇
  2001年   93篇
  2000年   90篇
  1999年   60篇
  1998年   80篇
  1997年   84篇
  1996年   88篇
  1995年   81篇
  1994年   74篇
  1993年   74篇
  1992年   92篇
  1991年   65篇
  1990年   57篇
  1989年   42篇
  1988年   3篇
  1984年   1篇
  1954年   2篇
  1952年   1篇
排序方式: 共有3691条查询结果,搜索用时 343 毫秒
111.
The effect of anomalous snow cover over the Tibetan Plateau upon the South Asian summer monsoon is investigated by numerical simulations using the NCAR regional climate model (RegCM2) into which gravity wave drag has been introduced. The simulations adopt relatively realistic snow mass forcings based on Scanning Multi-channel Microwave Radiometer (SNINIR) pentad snow depth data. The physical mechanism and spatial structure of the sensitivity of the South Asian early summer monsoon to snow cover anomaly over the Tibetan Plateau are revealed. The main results are summarized as follows. The heavier than normal snow cover over the Plateau can obviously reduce the shortwave radiation absorbed by surface through the albedo effect, which is compensated by weaker upward sensible heat flux associated with colder surface temperature, whereas the effects of snow melting and evaporation are relatively smaller.The anomalies of surface heat fluxes can last until June and become unobvious in July. The decrease of the Plateau surface temperature caused by heavier snow cover reaches its maximum value from late April to early May. The atmospheric cooling in the mid-upper troposphere over the Plateau and its surrounding areas is most obvious in May and can keep a fairly strong intensity in June. In contrast, there is warming to the south of the Plateau in the mid-lower troposphere from April to June with a maximum value in May.The heavier snow cover over the Plateau can reduce the intensity of the South Asian summer monsoon and rainfall to some extent, but this influence is only obvious in early summer and almost disappears in later stages.  相似文献   
112.
热带第四纪气候变化研究进展   总被引:2,自引:0,他引:2  
南美洲、非洲、亚洲以及澳洲、太平洋地区近百个实例表明,全球热带第四纪气候的波动不明显,例如晚更新世MlSS5~MISS2期间的D/0暖波动和Hi冷波动、末次冰期盛期、新仙女木冷回返都很少见报道。但是,相对而言,冷波动比暖波动较易识别,末次冰期有较多实例,新冰期I、Ⅱ、Ⅲ也有表现,而末次间冰期及全新世大暖期则不易识别。温度与湿度变化的时空配合有一定的规律性。末次冰期之前,环境普遍趋湿。末次冰期之后,干湿的地域差异较大。全新世回暖,但是,干湿的地域分布与此前相反。气候变化的地域差异与气候的地带性有关。南美洲的暖波动主要出现在北部。非洲中部赤道多雨带的气候相对稳定。亚洲南部的印度干湿变化明显。东南亚诸岛冷期趋湿。  相似文献   
113.
114.
Tropical Precipitation Estimated by GPCP and TRMM PR Observations   总被引:7,自引:0,他引:7  
In this study, tropical monthly mean precipitation estimated by the latest Global Precipitation Climatology Project (GPCP) version 2 dataset and Tropical Rainfall Measurement Mission Precipitation Radar (TRMM PR) are compared in temporal and spatial scales in order to comprehend tropical rainfall climatologically. Reasons for the rainfall differences derived from both datasets are discussed. Results show that GPCP and TRMM PR datasets present similar distribution patterns over the Tropics but with some differences in amplitude and location. Generally, the average difference over the ocean of about 0.5 mm d^-1 is larger than that of about 0.1 mm d^-1 over land. Results also show that GPCP tends to underestimate the monthly precipitation over the land region with sparse rain gauges in contrast to regions with a higher density of rain gauge stations. A Probability Distribution Function (PDF) analysis indicates that the GPCP rain rate at its maximum PDF is generally consistent with the TRMM PR rain rate as the latter is less than 8 mm d^-1. When the TRMM PR rain rate is greater than 8 mm d^-1, the GPCP rain rate at its maximum PDF is less by at least 1 mm d^-1 compared to TRMM PR estimates. Results also show an absolute bias of less than 1 mm d^-1 between the two datasets when the rain rate is less than 10 mm d^-1. A large relative bias of the two datasets occurs at weak and heavy rain rates.  相似文献   
115.
利用热带测雨卫星的测雨雷达 (TRMMPR)的探测结果 ,对 1 997 1 998年ElNin~o后期热带太平洋的降水结构进行了研究 ,并对比了非ElNin~o的 1 999年和 2 0 0 0年的同期降水情况 ,取得如下结果 :( 1 ) 1 997 1 998ElNin~o后期与非ElNin~o期间相比 ,1 997 1 998ElNin~o后期 ,热带东、中太平洋层云降水和对流云降水的比例明显增大、平均降水率也增大 ,并且层云强降水的比例增多 ,而层云弱降水比例减少。 ( 2 )在非ElNin~o期间 ,热带东、中太平洋对流云降水系统较为浅薄 ,冻结层高度比西太平洋低约 0 5km ;而在 1 997 1 998ElNin~o后期 ,这种差异明显减小 ,热带东、中太平洋对流云降水和层云降水都变得深厚 ;对流云降水和层云降水的降水率随高度的变化也发生了变化。 ( 3)对大气环流的分析表明 ,对应于降水结构的变化 ,热带太平洋地区的高空辐合辐散分布也发生了改变 ,导致Walker环流在 1 997 1 998ElNin~o后期减弱。  相似文献   
116.
基于1951—2018年哈德里中心海温资料、美国气象环境预报中心和美国国家大气研究中心再分析资料和第四代欧洲中心汉堡模式, 针对1994年、2018年等西北太平洋热带气旋(TC)生成异常多的年份, 研究了引起TC增加的海表温度异常(SSTA)模态及其影响机制。结果表明, 北半球热带中太平洋增暖与印度洋变冷是夏季西北太平洋TC生成频数增加的主要原因, 北大西洋负三极型式SSTA促使TC生成的进一步增加。热带中太平洋增暖与印度洋冷却在菲律宾以东激发出西风异常和气旋性环流异常。北大西洋负三极型式SSTA在我国南海、菲律宾至东南沿岸激发出气旋性环流异常。前者在西北太平洋中部, 后者在南海产生有利于TC生成的局地环境。1994年和2018年夏季热带中太平洋出现暖SSTA、印度洋为冷SSTA、北大西洋呈现负三极型式SSTA, 西北太平洋TC生成频数极端增多。近30年来, 当出现热带中太平洋增暖和印度洋冷却时, 北大西洋表现出比1989年以前更强的负三极型式SSTA, 使西北太平洋TC生成频数和北半球热带印度洋-太平洋SSTA梯度的线性相关更显著。  相似文献   
117.
利用EN4(the UK Met Office EN4.2.1 analyses)盐度数据发现北太平洋副热带高盐中心——北太平洋热带水(NPTW)的海表面积与体积在2000—2008年、2014—2017年存在下降趋势,2008—2014年期间存在上升趋势,进一步的研究表明,这些变化与太平洋年代际震荡(PDO)的位相转换紧密相关。利用淡水通量数据以及ECCO2(Circulation and Climate of the Ocean, Phase II)流场数据计算分析后表明,淡水通量对NPTW的变化贡献较小,而水平输运对NPTW的表面积以及体积变化贡献较大,这与PDO正(负)位相期间北赤道流(NEC)的向北(南)摆动有关。  相似文献   
118.
中尺度暖涡对热带气旋强度变化的影响及作用机制   总被引:1,自引:0,他引:1  
基于两组理想化数值试验,对比研究了分布于热带气旋不同位置处的海洋中尺度暖涡所引发的热带气旋强度变化的时空特征。研究发现,热带气旋中心附近的暖涡对热带气旋强度有增强作用,而位于热带气旋外围的暖涡则会抑制热带气旋的发展。本研究将暖涡增强(减弱)热带气旋强度的区域称为内(外)区。随着时间的推移,内(外)区暖涡对热带气旋强度的增强(减弱)幅度逐渐减小(增大),区域范围同步减小(增大)。内区暖涡增强了热带气旋的次级环流和结构对称性、增加了海气界面热通量,同时减弱了外围螺旋雨带,进而导致热带气旋强度增强;若暖涡在外区,其对热带气旋的作用相反,导致热带气旋强度减弱。由于理想化试验中热带气旋静止不动,因此研究结果可能只适用于传播速度较慢的热带气旋。本研究结果有助于更好地理解热带气旋和海洋中尺度暖涡之间的相互作用,并通过引入热带气旋外区暖涡的影响助力提高热带气旋强度预报工作。  相似文献   
119.
120.
本文使用中国气象局、美国联合台风预警中心和日本气象厅的3套热带气旋最佳路径资料(CMA资料、JTWC资料和RSMC资料)分析了1951—2016年西北太平洋热带气旋活动特征。3套资料反映的结果如下:热带气旋主要发生在10°N—25°N范围内,且1980年前其位置点在纬度上有南移的变化趋势,1980年后则相反;移速主要分布在2~6 m/s区间,在25°N左右移速明显加快,1980年前移速呈显著减小趋势;最大持续风速主要分布在10~15 m/s区间,1980年前最大持续风速有减小趋势;在风速较大的区域热带气旋最大风速半径较小,2001—2016年热带气旋和台风最大风速半径每年分别减小0.46 km和0.54 km。CMA和RSMC资料的结果高度一致,而JTWC资料结果与它们都存在一定的差异。热带气旋位置点频数和强度的变化受资料间差异的影响较大,而其位置及移速的变化则受影响较小。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号