首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   7篇
  国内免费   21篇
地球物理   9篇
地质学   42篇
海洋学   2篇
  2022年   2篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   3篇
  2012年   2篇
  2011年   3篇
  2010年   2篇
  2009年   3篇
  2008年   4篇
  2007年   2篇
  2006年   7篇
  2005年   2篇
  2004年   3篇
  2003年   1篇
  2002年   2篇
  2001年   2篇
  1998年   1篇
  1995年   1篇
排序方式: 共有53条查询结果,搜索用时 15 毫秒
21.
Convective removal and mantle delamination are geodynamical mechanisms proposed to explain the presence of extension in the Alboran Sea within a regional context of compression. Using a new thermo-mechanical algorithm, we present here a quantitative evaluation and comparison of conceptual models based on these geodynamical mechanisms. In contrast to the in situ convective removal process, the laterally propagating delamination mechanism is shown here to be consistent with first-order features of the Alboran Sea such as the thinning/thickening distribution, intermediate-depth seismicity and upper mantle structure imaged by seismic tomography. The lower crust is predicted to reach depths of 100–150 km in some areas, due to mechanically-driven viscous drag of the downwelling mantle.  相似文献   
22.
依据穿过巴颜喀拉地块的北部、秦岭地块、祁连地块、海原弧形构造区和鄂尔多斯地块的玛沁-兰州-靖边人工地震剖面的P波、S波的速度结构和泊松比结构,对青藏高原东北缘的地壳组成进行研究,并探讨其动力学过程. 首先,系统地归纳总结出一套将地震测深得到的原位P波速度校正到实验室温压条件下波速的具体可行的方法,利用大地热流值求取地壳不同深度的温度是该方法的关键. 然后,将上述剖面的原位P波速度校正到600 MPa和室温条件下,结合泊松比与相同温压条件下的实验室岩石波速测量结果进行对比,确定研究区的岩性组成. 结果表明,青藏高原东北缘地壳平均P波校正波速为6.43 km/s,地壳整体像上地壳一样呈酸性. 巴颜喀拉地块和秦岭地块南部的下地壳底部缺失校正速度Vp>6.9 km/s的基性岩,下地壳中酸性互层,下地壳整体呈酸性. 其他地块下地壳底部有2~10 km厚的校正速度Vp>6.9 km/s的基性岩,下地壳整体呈中性. 最后,根据青藏高原东北缘地壳结构和组成的研究成果,支持地壳增厚主要发生在下地壳的观点;提出巴颜喀拉地块和秦岭地块南部曾发生过下地壳拆沉作用,并导致高原的加速隆升.  相似文献   
23.
拉萨地块北部阿索地区新发现的晚白垩世晚期基性岩墙对于讨论班公湖-怒江洋盆闭合后的碰撞过程具有重要研究意义。本文报道了阿索地区目思基性岩墙的全岩地球化学组成和LA-ICP-MS锆石U-Pb年龄。研究表明,目思基性岩墙中一组最年轻锆石的U-Pb加权平均年龄为74Ma。岩墙内的辉绿玢岩SiO2含量介于51.90%~53.55%之间,MgO含量介于3.98%~4.97%之间,Mg^#为50.0~57.5,低Cr(51.30×10^-6~79.48×10^-6)和Ni(55.94×10^-6~74.17×10^-6)含量。岩墙具有轻稀土元素富集的特征,明显的负Eu异常。在微量元素方面,富集Ba、Th、U、K等大离子亲石元素富集,亏损Nb、Ta、Ti等高场强元素,并具有Pb的正异常。La/Sm-Sm/Yb投图结果显示基性岩墙来自于尖晶石+石榴石二辉橄榄岩地幔源区1%~5%的部分熔融,并在演化过程中发生了橄榄石、单斜辉石及斜长石的结晶分异,同时在岩浆上升过程中受到地壳混染。结合区域地质背景,拉萨地块与羌塘地块碰撞后下地壳增厚并发生榴辉岩化,导致拆沉作用。目思基性岩墙的锆石U-Pb年龄表明拆沉作用持续到晚白垩世晚期。  相似文献   
24.
Composite materials are a preferred choice when high strength/weight ratio and resistance to corrosion are needed. For assembly, composite parts are joined by using adhesives and/or fasteners. Due to the increased use of composites, there is a need for reliable and affordable structural health monitoring (SHM) methods for the detection of weakened bonds and loosened fasteners. Heterodyne effect may be utilized for the evaluation of debonded area when the linear characteristics of the system changes to nonlinear as a result of light contact in the bonding zone and this nonlinear system responds to appropriate bitonal excitations with new frequencies. Nonlinear elastic wave spectroscopy (NEWS) methods are using the same concept although they are limited to the combination of a high and a low frequency. Heterodyne method allows the engineers to have control over the new output frequencies as indicators of nonlinearity in the target structure. In this study, implementation of the heterodyne method is proposed for identification of the debonded region and evaluation of the compressive forces applied to facing plates. The proposed SHM method proved to be effective in both scenarios.  相似文献   
25.
东昆仑地区广泛分布了大量花岗岩.已有的研究工作表明,东昆仑地区的花岗岩主要形成于晚二叠世-中三叠世和晚三叠世两个时期.本文提供了香日德地区二长花岗岩和花岗闪长岩的锆石U-Pb定年数据和全岩化学,稀土微量元素及Sr、Nd同位素地球化学研究资料,结合前人对该区不同时期花岗岩的研究成果,对香日德晚三叠世花岗岩的成因及其形成的动力学背景进行了讨论.研究表明东昆仑东段香日德地区的二长花岗岩和花岗闪长岩分别形成于223.2±1.7Ma和220.6±1.5Ma,属晚三叠世花岗岩浆作用的产物.根据该花岗岩的主量元素(特别是A/CNK比值),岩石富集大离子亲石元素(LILE:Rb、Th和K)和轻稀土(LREE),明显亏损高场强元素(HFSE:Nb、Ta、Ti和P),以及岩石具有相对高的Isr值(0.70820~0.71148)和相对低的εNd(t)值为-6.4~-3.6和较古老的模式年龄t2DM(1.5~1.7Ga)等地球化学特征,论证了该花岗岩的成因,指出香日德花岗闪长岩-二长花岗岩的起源和成因与碰撞后的背景下岩石圈的拆沉诱发的古老地壳物质的部分熔融作用有关,晚三叠世花岗岩岩浆作用是对自晚海西期以来幔源玄武质岩浆长期的底侵作用及地壳不断加厚的一种响应.它进一步证明在东昆仑地区,阿尼玛卿古特提斯洋的俯冲作用一直持续到早三叠纪,至晚三叠世才全面转入陆内碰撞造山阶段.晚三叠世花岗岩与晚二叠世-中三叠世花岗岩在暗色包体含量、岩浆混合作用的特征等方面的差异,可以用幔源物质贡献量的差异以及花岗质岩浆作用所经历的MASH过程的不同来解释.  相似文献   
26.
The Hercynian Köse composite pluton (KCP) is located in the Eastern Pontides, Turkey, and consists of two units of high-K calc-alkaline, primarily peraluminous granites: (i) the internal body, and (ii) the external body. The internal body, which was emplaced at 322–318 Ma (40Ar/39Ar ages on biotite and hornblende, respectively), displays a wide compositional range (49–71 wt.% SiO2) and contains several lithologies: hybrid equigranular rocks, microgranular magmatic enclaves, mafic dikes, porphyry dikes and mylonites. The external body, which was emplaced at 306.7 Ma (40Ar/39Ar age on K-feldspar), consists exclusively of monzogranite (> 71 wt.% SiO2). Field relationships, mineralogy, major- and trace element geochemistry, and initial Sr–Nd isotope values (ISr = 0.70821 to 0.71002, eNd(t) = ?6.6 to ?8.0) show that the internal body was differentiated and evolved by crystal fractionation and magma mixing processes. The end-members of the mixing process were a mafic rock and a felsic rock. Mafic magma was derived from a relatively deep-seated (25–30 km) crustal storage reservoir, not directly from the mantle, and underwent significant differentiation by fractional crystallization and crustal contamination before mixing. In addition, these magma storages probably supplied the additional heat necessary to initiate crustal melting. Some of the additional heat may have also been released by the radiogenic decay of heat producing elements. Eventually, the existing felsic magma from the melting of K-bearing meta-greywackes was raised to its emplacement level at a depth of ~ 10–16 km. After partial crystallization, it was sporadically intruded by modified mafic magma from the deeper crustal reservoir to generate hybrid rocks. The hybrid rocks were then elevated to a shallower depth by normal faults during the collapse of the orogen and erosion. Mylonites that were later overprinted by pseudotachylites are typically constrained to the internal body and are regarded as markers of this event. The external body is characterized by a significantly less radiogenic and limited range of Sr–Nd isotope values (ISr = 0.70639 to 0. 70792, eNd(t) = ?4.4 to ?6.5) than those of the internal body and a lack of rocks documenting the open system differentiation processes. Fractional crystallization is the exclusive process responsible for the elemental range within the body. The rocks also contain less biotite relative to those of the internal body. All these involve less K-bearing mid-crustal rocks (orthogneisses) in their source, which was probably located at depths near the lower crust. The absence of purely lower crustal-derived melts can be explained by the removal of this type of material during the formation of the parental melt. This melt later ascended to its emplacement level at a depth of around ~ 5–10 km and cut the hybrid rocks of the internal body and regional metamorphic rocks that had been raised previously due to ongoing erosion. The melt that injected into the cracks of the internal body crystallized into porphyries because there was not enough time for the entire crystallization of magma. The data presented here indicate that late Early Carboniferous and Late Carboniferous magmatism occurred in a collisional setting. Slab detachment and subsequent delamination seem to be the most plausible mechanisms for the generation of the Hercynian high-K calc-alkaline magmatism in the Eastern Pontides, Turkey.  相似文献   
27.
The Liuyuan mafic and ultramafic rocks are exposed in Southern Beishan, which is along the southern branch of the Central Asian Orogenic Belt (CAOB). Zircon SHRIMP U–Pb dating showed that Liuyuan gabbros intruded during the early Permian (~ 270–295 Ma) coeval with the basalts and the ultramafic rocks were emplaced at about 250 Ma. The basalts are within–plate tholeiites with slight enrichment in light rare earth elements (LREE) relative to heavy rare earths (HREE) and small negative anomalies of Nb and Ta. Gabbros including olivine gabbros, olivine gabbronorites and troctolites are grouped into two: the cumulate gabbros are depleted in LREE and show small negative Nb and Ta anomalies but distinct positive Sr and Eu anomalies; non–cumulate gabbros resemble tholeiitic basalts. Lamprophyres and cumulate ultramafic rocks are characterized by large enrichment of LREE relative to HREE with depletion in Nb and Ta. The enriched Sr–Nd isotopic trend from DM towards the EM II end member component implies that the lithospheric mantle was progressively enriched with depth by the involvement of subducted crustal material due to the delamination of thickened mantle lithosphere after collision. The digestion of subducted crustal material into the mantle resulting in the metasomatized and enriched mantle is inferred to be an important process during crust–mantle interaction.  相似文献   
28.
In contrast to the normal ‘Wilson cycle’ sequence of subduction leading to continental collision and associated mountain building, the evolution of the New Zealand plate boundary in the Neogene reflects the converse—initially a period of continental convergence that is followed by the emplacement of subduction. Plate reconstructions allow us to place limits on the location and timing of the continental convergence and subduction zones and the migration of the transition between the two plate boundary regimes. Relative plate motions and reconstructions since the Early to Mid-Miocene require significant continental convergence in advance of the emplacement of the southward migrating Hikurangi subduction—a sequence of tectonism seen in the present plate boundary geography of Hikurangi subduction beneath North Island and convergence in the Southern Alps along the Alpine Fault. In contrast to a transition from subduction to continental convergence where the leading edge of the upper plate is relatively thin and deformable, the transition from a continental convergent regime, with its associated crustal and lithospheric thickening, to subduction of oceanic lithosphere requires substantial thinning (removal) of upper plate continental lithosphere to make room for the slab. The simple structure of the Wadati–Benioff zone seen in the present-day geometry of the subducting Pacific plate beneath North Island indicates that this lithospheric adjustment occurs quickly. Associated with this rapid lithospheric thinning is the development of a series of ephemeral basins, younging to the south, that straddle the migrating slab edge. Based on this association between localized vertical tectonics and slab emplacement, the tectonic history of these basins records the effects of lithospheric delamination driven by the southward migrating leading edge of the subducting Pacific slab. Although the New Zealand plate boundary is often described as simply two subduction zones linked by the transpressive Alpine Fault, in actuality the present is merely a snapshot view of an ongoing and complex evolution from convergence to subduction.  相似文献   
29.
沿金沙江-哀牢山古特提斯缝合带两侧发育的巨型新生代陆内钾质岩浆岩带一直是地质学界关注的热点,其西侧的印支地块钾质岩浆岩尚缺乏深入探讨,制约着对钾质岩浆岩带成因的理解以及对印支地块深部壳幔物质结构的认识。本研究选取的莲花山岩体位于印支地块北部的兰坪盆地东南端,依次对其开展系统的岩相学、元素地球化学、锆石U-Pb年代学以及Hf同位素研究。结果显示,岩体主要由石英二长斑岩组成,LA-ICPMS锆石U-Pb定年结果制约岩体侵位时代在~34Ma。岩石样品具有富碱(Na_2O+K_2O=9.0%~9.2%)、高K(K_2O/Na_2O=1.0~1.2)特征,属钾玄岩浆系列;富集Th和U等大离子亲石元素,亏损Nb和Ta等高场强元素,轻稀土元素富集((La/Yb)N=22~24)。综合反映莲花山钾质岩浆岩系由大洋板片俯冲作用造成的富集源区的部分熔融作用而产生。锆石εHf(t)在+1.4~+4.6,集中在+2.8~+4.0,对应的Hf同位素地壳模式年龄为1027~815Ma,集中在934~860Ma。岩体集中的锆石εHf(t)值和缺乏继承锆石的特征,说明岩浆岩上侵过程中未受到围岩的混染。目前已知的印支地块东部自新元古代以来(1000Ma)经历的俯冲作用仅有金沙江-哀牢山古特提斯洋二叠纪(ca.290~250Ma)西向俯冲,莲花山岩体锆石具有的新元古代Hf同位素地壳模式年龄反映古特提斯洋板片俯冲过程有陆源沉积物质加入地幔中,该认识与岩石Nb/U比值(1.3~4.7)所反映的加入地幔的俯冲物质属性一致。莲花山岩体和其西侧同期卓潘钾质杂岩体与扬子西缘钾质岩体群同属金沙江-哀牢山钾质岩浆岩带的组成部分,它们由始新世时期古特提斯缝合带加厚岩石圈拆沉作用导致的软流圈热上涌而诱发。该构造-热事件影响的空间范围可能较传统认为的更大,其向西远涉至印支地块内部,从而导致了莲花山和卓潘等岩体的形成。  相似文献   
30.
The Vrancea zone of Romania constitutes one of the most active seismic zones in Europe, where intermediate-depth (70–200 km) earthquakes of magnitude in excess of Mw = 7.0 occur with relative frequency in a geographically restricted area within the 110° bend region of the southeastern Carpathian orogen. Geologically, the Vrancea zone is characterized by (a) a laterally restricted, steeply NW-dipping seismogenic volume (30 × 70 × 200 km), situated beneath (b) thickened continental crust within the highly arcuate bend region of the Carpathian orocline, and (c) miscorrelation of hypocenters with the position of known or inferred suture zones in the Carpathian orogenic system. Geologic data from petroleum exploration in the Eastern Carpathians, published palinspastic reconstructions, and reprocessing of industry seismic data from the Carpathian foreland indicate that (1) crust of continental affinity extends significantly westward beneath the external thrust nappes (Sub-Carpathian, Marginal Folds, and Tarcau) of the Eastern Carpathians, (2) Cretaceous to Miocene strata of continental affinity can be reconstructed westward to a position now occupied by the Transylvanian basin, and (3) geologic structure in the Carpathian foreland (including the Moho) is sub-horizontal directly to the east and above the Vrancea seismogenic zone. Taken together, these geologic relationships imply that the Vrancea zone occupies a region overlain by continental crust and upper mantle, and does not appear to originate from a subducted oceanic slab along the length of the Carpathian orogen. Accordingly, the Vrancea zone appears to potentially be an important place to establish evidence for active lithospheric delamination.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号