首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96篇
  免费   14篇
  国内免费   1篇
测绘学   5篇
大气科学   4篇
地球物理   23篇
地质学   50篇
海洋学   7篇
天文学   11篇
自然地理   11篇
  2022年   2篇
  2021年   2篇
  2020年   8篇
  2019年   1篇
  2018年   4篇
  2017年   6篇
  2016年   9篇
  2015年   2篇
  2014年   3篇
  2013年   5篇
  2012年   5篇
  2011年   5篇
  2010年   8篇
  2009年   7篇
  2008年   3篇
  2007年   5篇
  2006年   3篇
  2005年   8篇
  2004年   4篇
  2003年   2篇
  2002年   4篇
  2001年   2篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1993年   1篇
  1992年   1篇
  1991年   3篇
  1988年   1篇
排序方式: 共有111条查询结果,搜索用时 718 毫秒
31.
Probability distributions for carbon burning, atmospheric CO2, and global average temperature are produced by time series calibration of models of utility optimization and carbon and heat balance using log-linear production functions. Population growth is used to calibrate a logistically evolving index of development that influences production efficiency. Energy production efficiency also includes a coefficient that decreases linearly with decreasing carbon intensity of energy production. This carbon intensity is a piecewise linear function of fossil carbon depletion. That function is calibrated against historical data and extrapolated by sampling a set of hypotheses about the impact on the carbon intensity of energy production of depleting fluid fossil fuel resources and increasing cumulative carbon emissions. Atmospheric carbon balance is determined by a first order differential equation with carbon use rates and cumulative carbon use as drivers. Atmospheric CO2 is a driver in a similar heat balance. Periodic corrections are included where required to make residuals between data and model results indistinguishable from independently and identically distributed normal distributions according to statistical tests on finite Fourier power spectrum amplitudes and nearest neighbor correlations. Asymptotic approach to a sustainable non-fossil energy production is followed for a global disaggregation into a tropical/developing and temperate/more-developed region. The increase in the uncertainty of global average temperature increases nearly quadratically with the increase in the temperature from the present through the next two centuries.  相似文献   
32.
The “type” DeKalb mounds of northeastern Illinois, USA (42.0°N, −88.7°W), are formed of basal sand and gravel overlain by rhythmically bedded fines, and weathered sand and gravel. Generally from 2 to 7 m thick, the fines include abundant fossils of ostracodes and uncommon leaves and stems of tundra plants. Rare chironomid head capsules, pillclam shells, and aquatic plant macrofossils also have been observed.Radiocarbon ages on the tundra plant fossils from the “type” region range from 20,420 to 18,560 cal yr BP. Comparison of radiocarbon ages of terrestrial plants from type area ice-walled lake plains and adjacent kettle basins indicate that the topographic inversion to ice-free conditions occurred from 18,560 and 16,650 cal yr BP. Outside the “type” area, the oldest reliable age of tundra plant fossils in DeKalb mound sediment is 21,680 cal yr BP; the mound occurs on the northern arm of the Ransom Moraine (−88.5436°W, 41.5028°N). The youngest age, 16,250 cal yr BP, is associated with a mound on the Deerfield Moraine (−87.9102°W, 42.4260°N) located about 9 km east of Lake Michigan. The chronology of individual successions indicates the lakes persisted on the periglacial landscape for about 300 to 1500 yr.  相似文献   
33.
A revised chronological framework for the deglaciation of the Lake Michigan lobe of the south‐central Laurentide Ice Sheet is presented based on radiocarbon ages of plant macrofossils archived in the sediments of low‐relief ice‐walled lakes. We analyze the precision and accuracy of 15 AMS 14C ages of plant macrofossils obtained from a single ice‐walled lake deposit. The semi‐circular basin is about 0.72 km wide and formed of a 4‐ to 16‐m‐thick succession of loess and lacustrine sediment inset into till. The assayed material was leaves, buds and stems of Salix herbacea (snowbed willow). The pooled mean of three ages from the basal lag facies was 18 270 ± 50 14C a BP (21 810 cal. a BP), an age that approximates the switch from active ice to stagnating conditions. The pooled mean of four ages for the youngest fossil‐bearing horizon was 17 770 ± 40 14C a BP (21 180 cal. a BP). Material yielding the oldest and youngest ages may be obtained from sediment cores located at any place within the landform. Based on the estimated settling times of overlying barren, rhythmically bedded sand and silt, the lacustrine environment persisted for about 50 more years. At a 67% confidence level, the dated part of the ice‐walled lake succession persisted for between 210 and 860 cal. a (modal value: 610 cal. a). The deglacial age of five moraines or morainal complexes formed by the fluctuating margin of the Lake Michigan lobe have been assessed using this method. There is no overlap of time intervals documenting when ice‐walled lakes persisted on these landforms. The rapid readvances of the lobe during deglaciation after the last glacial maximum probably occurred at some point between the periods of ice‐walled lake sedimentation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
34.
The water chemistry of a groundwater-fed sinkhole-pond near St. Louis, Missouri, and its associated climate during the last glaciation are reconstructed by comparison with autecological data of modern ostracodes from about 5,500 sites in Canada. A 4.8-m succession of fossiliferous sediment yielded ostracode assemblages that collectively are generally found today in ponds in North America including the species Cyclocypris ampla, C. laevis, Cypridopsis vidua, Candona crogmaniana, C. distincta, and C. ohioensis. Fossils of Picea needles and the ostracode Cyclocypris sharpei imply that best analog sites for the succession are in central to south-central Canada. The pond formed 23,300 ± 400 cal yr BP when a sinkhole became plugged by a clay bed about 1 m thick. By about 20,250 cal yr BP, the pond had desiccated and was buried by loess. The sediment accumulation rate was about 0.18 cm/yr, and each sample interval (6 cm) represents a time slice of 33 years. Data from this record provides the first fairly high resolution proxy record of the glacial paleoclimate of the mid-latitude of North America. The analog data indicate the water in the hydrologically-open spring-fed pond was less than 1 m deep. The paleoclimatic reconstructions imply gradually drier conditions and uniform, cool temperatures. The shallow water depth indicates that the temperature reconstruction is robust with mean annual temperatures (MATs) that ranged between 0.8 and 3.9°C, and mean July temperatures that ranged from 16.8 and 18.1°C. Other estimated climatic parameters include mean annual precipitation (MAP; 430 to 840 mm/yr), and moisture balance (P-E; –111 to 298 mm/yr). Compared to values measured today at St. Louis, the MAP was about 400 mm less, MAT about 10°C cooler, and P-E, about the same. These values are consistent with other published reconstructions based on modern analog analysis of fossil beetles and pollen, and paleothermometry based on amino acid racemization. The total dissolved solids (TDS) progressively increased from about 87 to 431 mg/L. Changes in TDS reflect either the balance between the relative inputs of karst groundwater and overland flow, or changes in the duration of water-rock interaction associated with the groundwater. The postulated long-term 900 ± 200 year cyclicity of growing-season moisture and temperature, attributed to El Niño-Southern Oscillation cycles, is not expressed in the reconstructed hydrologic or climatic data. This is attributed, in part, to the mediating effect on temperature by monothermic groundwater input to this flow-through system.  相似文献   
35.
It is shown how to set up a mathematically elegant and fully relativistic superfluid model that can provide a realistic approximation (neglecting small anisotropies due to crust solidity, magnetic fields, etc., but allowing for the regions with vortex pinning) of the global structure of a rotating neutron star, in terms of just two independently moving constituents. One of these represents the differentially rotating neutron superfluid, while the other part represents the combination of all the other ingredients, including the degenerate electrons, the superfluid protons in the core, and the ions in the crust, the electromagnetic interactions of which will tend to keep them locked together in a state of approximately rigid rotation. Order of magnitude estimates are provided for relevant parameters such as the resistive drag coefficient.  相似文献   
36.
A perplexing macrogeomorphic problem is the persistence of topography in mountain ranges that were initially formed by orogenic events hundreds of millions of years old. In this paper, we deconvolve the post-Triassic macrogeomorphic history of a portion of one of these ranges, the central and northern Appalachians, using a well-documented offshore isopach sedimentary record of the US Atlantic margin. Topography is an important signature of tectonic, eustatic and/or geomorphic processes that produces changes in the erodible thickness of the crust (ETC). We define ETC as the total thickness of crust that would have to be consumed by erosion to reduce the mean elevation of a landscape to sea level. We use the term ‘source flux’, designated by ν˙, to describe the rate of change in ETC attributed to deep-seated geological processes such as crustal thickening, crustal extension, magmatic intrusions or dynamic flow in the mantle. In a mountain belt, the rate of change of mean elevation with respect to a base level, designated by ? ′, can be represented as ? ′ = c(ν˙ ? k d z ′ ?; ? c ) ?& hairsp;l˙ , where k d is a proportionality constant relating the mean mechanical erosion rate to mean elevation, ? c is the mean chemcial erosion rate, c  is a compensation ratio (held constant for Airy isostasy at 0.21) and l˙  is the rate of eustatic sea-level change. This equation describes the sum of constructive source terms, two destructive erosion terms and a eustatic sea-level term. We use this simple linear equation to develop a landscape evolution model based on the concept of a unit response function. The unit response function is analogous to a unit hydrograph which describes the relationship between input (rainfall) and output (discharge) in a hydrological system. In our case, we solve for the general relationship between the source flux into the mountain belt and the erosional flux out of the belt. Offshore sediment volumes are used to determine the erosional flux. Drainage basin area is treated as either a constant (pinned drainage divide) or as increasing through time (migrating drainage divide). We use a third-order polynomial fit to a global sea-level curve to account for long-term eustatically driven changes in ETC and in drainage basin area. Chemical erosion is treated as a constant fixed at 5 m Myr?1. We consider two end-member models. The first is a ‘tectonic’ model in which the source flux is allowed to vary while k d is assumed to be constant over geological time and equal to its mean Pleistocene value of about 0.07 Myr?1. The second is an ‘erodibility’ model in which k d is allowed to vary, reflecting changes in climatic, climatic variables and rock-type erodibility, while the source flux is held constant at zero. The ‘tectonic’ model reveals four important increases in the source flux, ranging from 200 to 2000 m Myr?1 that occur over short (<10 Myr) time spans, followed by a protracted period (>25 Myr) where ν˙ drops below zero to values of ?1000 to ?6000 m Myr?1. The ‘erodibility’ model produces a topography that decays in a step-like fashion from an initial mean elevation that ranges between ~1800 and 2300 m. These models cannot unequivocally distinguish the relative importance of tectonic vs. climatic processes in the macrogeomorphic evolution of the post-rift Appalachians, but they do provide some first-order quantitative prediction about these two end-member options. In light of existing stratigraphic, geological and thermochronological data, we favour the tectonic model because most of the events correlate well in time and form with known syn- and post-rift magmatic events. Nevertheless, the most recent episode of increased sediment flux to the offshore basins during the Miocene remains difficult to explain by either model. Limited evidence suggests that this event may reflect asthenospheric flow-driven uplift and the development of dynamically supported topography at a time when mechanical erosion rates were increasing in response to a cooling terrestrial climate.  相似文献   
37.
Lateral motion of material relative to the regional thermal and kinematic frameworks is important in the interpretation of thermochronology in convergent orogens. Although cooling ages in denuded settings are commonly linked to exhumation, such data are not related to instantaneous behavior but rather to an integration of the exhumation rates experienced between the thermochronological ‘closure’ at depth and subsequent exposure at the surface. The short spatial wavelength variation of thermal structure and denudation rate typical of orogenic regions thus renders thermochronometers sensitive to lateral motion during exhumation. The significance of this lateral motion varies in proportion with closure temperature, which controls the depth at which isotopic closure occurs, and hence, the range of time and length scales over which such data integrate sample histories. Different chronometers thus vary in the fundamental aspects of the orogenic character to which they are sensitive. Isotopic systems with high closure temperature are more sensitive to exhumation paths and the variation in denudation and thermal structure across a region, while those of lower closure temperature constrain shorter-term behaviour and more local conditions.Discounting lateral motion through an orogenic region and interpreting cooling ages purely in terms of vertical exhumation can produce ambiguous results because variation in the cooling rate can result from either change in kinematics over time or the translation of samples through spatially varying conditions. Resolving this ambiguity requires explicit consideration of the physical and thermal framework experienced by samples during their exhumation. This can be best achieved through numerical simulations coupling kinematic deformation to thermal evolution. Such an approach allows the thermochronological implications of different kinematic scenarios to be tested, and thus provides an important means of assessing the contribution of lateral motion to orogenic evolution.  相似文献   
38.
The Nature of Uncertainty in Historical Geographic Information   总被引:8,自引:1,他引:8  
While the presence of uncertainty in the geometric and attribute aspects of geographic information is well known, it is also present in temporal information. In spatiotemporal GIS databases and other formal representations, uncertainty in all three aspects of geography (space, time, and theme) must often be modeled, but a good data model must first be based on a sound theoretical understanding of spatiotemporal uncertainty. The nature of both uncertainty inherent in a phenomenon (often termed indeterminacy) and uncertainty in assertions of that phenomenon can be better understood through the Uncertain Temporal Entity Model , which characterizes the cause, type, and form of uncertainties in the spatial, temporal, and attribute aspects of geographic information. These uncertainties are the result of complexities and problems in two processes: the process of conceptualization, by which humans make sense of an infinitely complex reality, and measurement, by which we create formal representations (e.g. GIS) of those conceptual models of reality. Based on this framework, the nature and form of uncertainty is remarkably consistent across various situations, and is approximately equivalent in the three aspects, which will enable consistent solutions for representation and processing of spatiotemporal data.  相似文献   
39.
Tephras are often used in paleolimnology and other stratigraphicapplications as a chronostratigraphic marker. Where analytical errors inradiocarbon or other dating methods make precise comparison between sitesdifficult, tephras provide an absolute stratigraphic reference that can be usedto assess the relative ages of events across a region. Applications oftephrochronology typically make the assumption that a tephra is deposited atwhat was the top of the stratigraphic sequence at the time of deposition, andthat the contact between the tephra and underlying sediments is anisochron. This paper presents evidence from two lakes in western Canadawhich suggest that tephras may be very mobile within the sedimentary column,particularly in low-density organic lake sediments. Analysis of sedimentcores from Copper Lake, Alberta, suggest that the 6730 BP Mazama tephra moveddown-core by the equivalent of more than 3000 years. A vertical exposureof the Holocene sediments from Doal Lake, Yukon Territory, reveals that the1200 BP White River (WR) tephra, found throughout the southern Yukon, moveddown-sequence through organic lake sediments, to a stratum dating toapproximately 10,000 BP, creating conformable tephra beds at that level. Thistype of stratigraphic displacement has important consequences for the use oftephrochronology in lakes and other soft-sediment environments andunderscores the importance of properly identifying tephras and criticallyassessing their stratigraphic context within a lake core.  相似文献   
40.
Picrites from the neovolcanic zones in Iceland display a range in 187Os/188Os from 0.1297 to 0.1381 (γOs = + 2.1 to +8.7) and uniform 186Os/188Os of 0.1198375 ± 32 (2σ). The value for 186Os/188Os is within uncertainty of the present-day value for the primitive upper mantle of 0.1198398 ± 16. These Os isotope systematics are best explained by ancient recycled crust or melt enrichment in the mantle source region. If so, then the coupled enrichments displayed in 186Os/188Os and 187Os/188Os from lavas of other plume systems must result from an independent process, the most viable candidate at present remains core-mantle interaction. While some plumes with high 3He/4He, such as Hawaii, appear to have been subjected to detectable addition of Os (and possibly He) from the outer core, others such as Iceland do not.A positive correlation between 187Os/188Os and 3He/4He from 9.6 to 19 Ra in Iceland picrites is best modeled as mixtures of 1 Ga or older ancient recycled crust mixed with primitive mantle or incompletely degassed depleted mantle isolated since 1-1.5 Ga, which preserves the high 3He/4He of the depleted mantle at the time. These mixtures create a hybrid source region that subsequently mixes with the present-day convecting MORB mantle during ascent and melting. This multistage mixing scenario requires convective isolation in the deep mantle for hundreds of million years or more to maintain these compositionally distinct hybrid sources. The 3He/4He of lavas derived from the Iceland plume changed over time, from a maximum of 50 Ra at 60 Ma, to approximately 25-27 Ra at present. The changes are coupled with distinct compositional gaps between the different aged lavas when 3He/4He is plotted versus various geochemical parameters such as 143Nd/144Nd and La/Sm. These relationships can be interpreted as an increase in the proportion of ancient recycled crust in the upwelling plume over this time period.The positive correlation between 187Os/188Os and 3He/4He demonstrates that the Iceland lava He isotopic compositions do not result from simple melt depletion histories and consequent removal of U and Th in their mantle sources. Instead their He isotopic compositions reflect mixtures of heterogeneous materials formed at different times with different U and Th concentrations. This hybridization is likely prevalent in all ocean island lavas derived from deep mantle sources.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号