首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96篇
  免费   14篇
  国内免费   1篇
测绘学   5篇
大气科学   4篇
地球物理   23篇
地质学   50篇
海洋学   7篇
天文学   11篇
自然地理   11篇
  2022年   2篇
  2021年   2篇
  2020年   8篇
  2019年   1篇
  2018年   4篇
  2017年   6篇
  2016年   9篇
  2015年   2篇
  2014年   3篇
  2013年   5篇
  2012年   5篇
  2011年   5篇
  2010年   8篇
  2009年   7篇
  2008年   3篇
  2007年   5篇
  2006年   3篇
  2005年   8篇
  2004年   4篇
  2003年   2篇
  2002年   4篇
  2001年   2篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1993年   1篇
  1992年   1篇
  1991年   3篇
  1988年   1篇
排序方式: 共有111条查询结果,搜索用时 332 毫秒
81.
Geo-ontology Tools: The Missing Link   总被引:1,自引:0,他引:1  
Numerous authors have presented ontology building tools that have all been developed as part of academic projects and that are usually adaptations of more generic tools for geo-spatial applications. While we trust that these tools do their job for the special purpose they have been built, the GIScience user community is still a long way away from off-the-shelf ontology builders that can be used by GIS project managers. In this article, we present a comparative study of ontology building tools described in some twenty peer-reviewed GIScience journal articles. We analyze them from the perspective of two application domains, crime analysis and transportation/land use. For the latter, we developed a database schema, which is substantially different from the three main templates commonly used. The crime analysis application uses a rule base for an agent-based model that had no precursor. In both cases, the currently available set of tools cannot replace manual coding of ontologies for use with ESRI-based application software. Based on these experiences, we outline a requirements list of what the tools described in the first part of the article are missing to make them practical from an applications perspective. The result is an R&D agenda for this important aspect of GIScience.  相似文献   
82.
The stable isotopic records of ostracode valves deposited during the last interglaciation in Raymond Basin, Illinois, have 13C and 18O values as high as +16.5 and +9.2 respectively, the highest values yet reported from continental ostracodal calcite. Located in south-central Illinois, Raymond, Pittsburg, Bald Knob, and Hopwood Farm basins collectively have yielded important long pollen and ostracode records that date from about 130000 years ago to the present. Although fossils from the present-day interglaciation are not well preserved, these records constitute the only described, conformable, fossiliferous successions of this age from the interior of glaciated North America.The high 13C values from Raymond Basin are attributed to the residual effects of methane loss either by ebullition or by emission through the stems of senescent emergent aquatic vegetation. A mass balance model suggests that an increase in 13C of dissolved inorganic carbon on the order of +15 is possible within a few hours given modest rates of methanogenesis of about 0.02 mol m-2 d-1. The 13C records from other studies of ostracode valves have values approaching, but not exceeding about +14 suggesting a limiting value to 13C enrichment due to simultaneous inputs and outputs of dissolved inorganic carbon.Values of 18O in ostracodal calcite are quite variable (–4 to +9) in sediment from the late Sangamon subepisode. A model of isotopic enrichment in a desiccating water body implies that a reduction in reservoir volume of 20% could produce this range of isotopic values. High humidity and evaporation probably account for most of the 18O variability.  相似文献   
83.
Fully softened shear strength is an important empirical engineering concept for slope stability analyses of cuts in stiff clays and compacted embankments constructed of high-plasticity clays. This concept has been used to explain many first-time failures for which the back calculated shear strength is below the peak strength measured in the laboratory. A comprehensive review of case histories and laboratory studies related to fully softened shear strength was used to assess the application of this concept. The case history data were also used to provide guidelines on the soil types for which fully softened shear strength is appropriate, how and when this shear strength should be used in slope stability analysis, and how the fully softened failure envelope should be characterized. This paper contains specific guidelines on when and how the fully softened shear strength concept should be used in slope stability analyses.  相似文献   
84.
Crustal contamination of basalts located in the western United States has been generally under-emphasized, and much of their isotopic variation has been ascribed to multiple and heterogeneous mantle sources. Basalts of the Miocene Columbia River Basalt Group in the Pacific Northwest have passed through crust ranging from Precambrian to Tertiary in age. These flows are voluminous, homogenous, and underwent rapid effusion, all of which are disadvantages for crustal contamination while en route to the surface. The Picture Gorge Basalt of the Columbia River Basalt Group erupted through Paleozoic and Mesozoic oceanic accreted terranes in central Oregon, and earlier studies on these basalts provided no isotopic evidence for crustal contamination. New Sr, Nd, Pb, and O isotopic data presented here indicate that the isotopic variation of the Picture Gorge Basalt is very small, 87Sr/86Sr=0.70307–0.70371, Nd=+7.7-+4.8, 18O=+5.6±6.1, and 206Pb/204Pb=18.80–18.91. Evaluation of the Picture Gorge compositional variation supports a model where two isotopic components contributed to Picture Gorge Basalt genesis. The first component (C1) is reflected by low 87Sr/86Sr, high Nd, and nonradiogenic Pb isotopic compositions. Basalts with C1 isotopic compositions have large MgO, Ni, and Cr contents and mantle-like 18O=+5.6. C1 basalts have enrichments in Ba coupled with depletions in Nb and Ta. These characteristics are best explained by derivation from a depleted mantle source which has undergone a recent enrichment by fluids coming from a subducted slab. This C1 mantle component is prevalent throughout the Pacific Northwest. The second isotopic component has higher 87Sr/ 86Sr and 18O, lower Nd, and more radiogenic Pb isotopic compositions than C1. There is a correlation in the Picture Gorge data of Sr, Nd, and Pb isotopes with differentiation indicators such as decreasing Mg#, and increasing K2O/TiO2, Ba, Ba/Zr, Rb/Sr, La/Sm, and La/Yb. Phase equilibrium and mineralogical constraints indicate that these compositional characteristics were inherited in the Picture Gorge magmas at crustal pressures, and thus the second isotopic component is most likely crustal in origin. Mixing and open-system calculations can produce the isotopic composition of the most evolved Picture Gorge flows from the most primitive compositions by 8 to 21% contamination of isotopic compositions similar to accreted terrane crust found in the Pacific Northwest. Therefore, in spite of the disadvantages for crustal contamination and their narrow range in isotopic compositions, the process controlling isotopic variation within the Picture Gorge Basalt is primarily crustal contamination. We suggest that comprehensive analyses for basaltic suites and careful consideration of these data must be made to test for crustal contamination, before variation resulting from mantle heterogeneity can be assessed.Deceased  相似文献   
85.
Seasonal responses in estuarine metabolism (primary production, respiration, and net metabolism) were examined using two complementary approaches. Total ecosystem metabolism rates were calculated from dissolved oxygen time series using Odum’s open water method. Water column rates were calculated from oxygen-based bottle experiments. The study was conducted over a spring-summer season in the Pensacola Bay estuary at a shallow seagrass-dominated site and a deeper bare-bottomed site. Water column integrated gross production rates more than doubled (58.7 to 130.9 mmol O2 m?2 day?1) from spring to summer, coinciding with a sharp increase in water column chlorophyll-a, and a decrease in surface salinity. As expected, ecosystem gross production rates were consistently higher than water column rates but showed a different spring-summer pattern, decreasing at the shoal site from 197 to 168 mmol O2 m?2 day?1 and sharply increasing at the channel site from 93.4 to 197.4 mmol O2 m?2 day?1. The consistency among approaches was evaluated by calculating residual metabolism rates (ecosystem ? water column). At the shoal site, residual gross production rates decreased from spring to summer from 176.8 to 99.1 mmol O2 m?2 day?1 but were generally consistent with expectations for seagrass environments, indicating that the open water method captured both water column and benthic processes. However, at the channel site, where benthic production was strongly light-limited, residual gross production varied from 15.7 mmol O2 m?2 day?1 in spring to 86.7 mmol O2 m?2 day?1 in summer. The summer rates were much higher than could be realistically attributed to benthic processes and likely reflected a violation of the open water method due to water column stratification. While the use of sensors for estimating complex ecosystem processes holds promise for coastal monitoring programs, careful attention to the sampling design, and to the underlying assumptions of the methods, is critical for correctly interpreting the results. This study demonstrated how using a combination of approaches yielded a fuller understanding of the ecosystem response to hydrologic and seasonal variability.  相似文献   
86.
Remote sensing is a powerful tool for examining river morphology. This study used detailed field surveys to assess the capability of the CASI hyperspectral imaging system and Aquarius bathymetric LiDAR to measure bed elevations in rivers with disparate optical characteristics. Field measurements of water column optical properties in the clear Snake River, the more complex Blue and Colorado, and highly turbid Muddy Creek were used to calculate depth retrieval precision and dynamic range. Differences in depth of a few centimeters were detectable via passive optical techniques in the clearest stream, but precision was greatly reduced under turbid conditions. The bathymetric LiDAR evaluated in this study could not detect shallow depths or differences in depth smaller than 11 cm owing to the difficulty of distinguishing water surface and bottom returns in laser waveforms. In clear water and with high radiometric resolution, hyperspectral systems such as CASI could detect depths approaching 10 m, but semi‐empirical analysis of the Aquarius LiDAR indicated that maximum detectable depths were of the order of 2–3 m in the clear‐flowing Snake River, and closer to 1 m in the more turbid streams. Turbidity also constrained spectrally based depth retrieval, and depth estimates from the Blue/Colorado were far less reliable than on the Snake. Both sensors yielded positively biased (0.03 m for CASI, 0.08 m for Aquarius) bed elevations on the Snake, with precisions of 0.16–0.17 m. For the Blue/Colorado, mean errors were of the order of 0.2 m, biased shallow for optical data and biased deep for LiDAR, although no Aquarius laser returns were recorded from the deepest parts of these channels; precisions were reduced to 0.29–0.32 m. Both approaches have advantages and limitations, and prospective users must understand the capabilities and constraints associated with various types of remote sensing to ensure efficient use of these evolving technologies. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
87.
Supraglacial rivers on the Greenland Ice Sheet (GrIS) transport large volumes of surface meltwater toward the ocean, yet have received relatively little direct research. This study presents field observations of channel width, depth, velocity, and water surface slope for nine supraglacial channels on the south‐western GrIS collected between July 23 and August 20, 2012. Field sites are located up to 74 km inland and span 494–1485 m elevation, and contain measured discharges larger than any previous in situ study: from 0.006 to 23.12 m3/s in channels 0.20 to 20.62 m wide. All channels were deeply incised with near vertical banks, and hydraulic geometry results indicate that supraglacial channels primarily accommodate greater discharges by increasing velocity. Smaller streams had steeper water surface slopes (0.74–8.83%) than typical in terrestrial settings, yielding correspondingly high velocities (0.40–2.60 m/s) and Froude numbers (0.45–3.11) with supercritical flow observed in 54% of measurements. Derived Manning's n values were larger and more variable than anticipated from channels of uniform substrate, ranging from 0.009 to 0.154 with a mean value of 0.035 ± 0.027 despite the absence of sediment, debris, or other roughness elements. Ubiquitous micro‐depressions in shallow sections of the channel bed may explain some of these roughness values. However, we find that other, unobserved sources of flow resistance likely contributed to these elevated Manning's n values: future work should explicitly consider additional sources of flow resistance beyond bed roughness in supraglacial channels. We conclude that hydraulic modeling for these channels must allow for both subcritical and supercritical flow, and most importantly must refrain from assuming that all ice‐substrate channels exhibit similar hydraulic behavior, especially for Froude numbers and Manning's n. Finally, this study highlights that further theoretical and empirical work on supraglacial channel hydraulics is necessary before broad scale understanding of ice sheet hydrology can be achieved. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
88.
Drill sites in the southern Bay of Bengal at 3°N 91°E (International Ocean Discovery Program Expedition 362) have sampled for the first time a complete section of the Nicobar Fan and below to the oceanic crust. This generally overlooked part of the Bengal–Nicobar Fan System may provide new insights into uplift and denudation rates of the Himalayas and Tibetan Plateau. The Nicobar Fan comprises sediment gravity-flow deposits, mostly turbidites, that alternate with hemipelagite drapes and pelagite intervals of varying thicknesses. The decimetre-thick to metre-thick oldest pre-fan sediments (limestones/chalks) dated at 69 Ma are overlain by volcanic material and slowly accumulated pelagites (0.5 g cm−2 kyr−1). At Expedition 362 Site U1480, terrigenous input began in the early Miocene at ca 22.5 Ma as muds, overlain by very thin-bedded and thin-bedded muddy turbidites at ca 19.5 Ma. From 9.5 Ma, sand content and sediment supply sharply increase (from 1–5 to 10–50 g cm−2 kyr−1). Despite the abundant normal faulting in the Nicobar Fan compared with the Bengal Fan, it offers a better-preserved and more homogeneous sedimentary record with fewer unconformities. The persistent connection between the two fans ceased at 0.28 Ma when the Nicobar Fan became inactive. The Nicobar Fan is a major sink for Himalaya-derived material. This study presents integrated results of International Ocean Discovery Program Expedition 362 with older Deep Sea Drilling Project/Ocean Drilling Program/International Ocean Discovery Program sites that show that the Bengal–Nicobar Fan System experienced successive large-scale avulsion processes that switched sediment supply between the Bengal Fan (middle Miocene and late Pleistocene) and the Nicobar Fan (late Miocene to early Pleistocene). A quantitative analysis of the submarine channels of the Nicobar Fan is also presented, including their stratigraphic frequency, showing that channel size/area and abundance peaked at ca 2 to 3 Ma, but with a distinct low at 3 to 7 Ma: the intervening stratigraphic [sub]unit was a time of reduced sediment accumulation rates.  相似文献   
89.
The geomorphic effect of introducing a gravel augmentation totaling 520 m3 into a gravel‐bed stream during a dam‐controlled flood in May of 2015 was monitored with bedload transport measurements, an array of seismometers, and repeated topographic surveys. Half of the augmented gravel was injected into the flow with front‐end loaders on the rising limb of the flood and the other half was injected on the first day of the peak. Virtually all of the gravel transported past the injection point was deposited within about 7 to 10 channel widths of the injection point. Most of the injected gravel deposited along the left bank of the river whereas the right half of the channel bed was dominated by scour. The downstream third of the depositional area consisted of a small dune field that developed prior to the second gravel injection and subsequently migrated about one channel width downstream. A second depositional front was observed upstream from the gravel injection point, where a delta‐like wedge of bed material developed in the first hours of the flow release and changed little over the remainder of the release. These two depositional areas represent small‐scale bed‐material storage reservoirs with the potential to accumulate and periodically release packets of bed material. Interactions with such storage reservoirs are hypothesized to cause large bed‐material pulses to disperse by fragmenting into multiple smaller pulses. As a refinement to the conceptual model that views sediment pulse evolution in terms of dispersion and translation, the concept of pulse fragmentation has practical implications for gravel management. It implies that gravel augmentations can produce morphologic changes at locations that are separated from the augmentation point by arbitrarily long reaches, and it highlights the dependence of pulse propagation rates on the nature and distribution of the bed‐material storage reservoirs in the channel system. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
90.
This study examined the effects of natural and anthropogenic changes in confining margin width by applying remote sensing techniques – fusing LiDAR topography with image‐derived bathymetry – over a large spatial extent: 58 km of the Snake River, Wyoming, USA. Fused digital elevation models from 2007 and 2012 were differenced to quantify changes in the volume of stored sediment, develop morphological sediment budgets, and infer spatial gradients in bed material transport. Our study spanned two similar reaches that were subject to different controls on confining margin width: natural terraces versus artificial levees. Channel planform in reaches with similar slope and confining margin width differed depending on whether the margins were natural or anthropogenic. The effects of tributaries also differed between the two reaches. Generally, the natural reach featured greater confining margin widths and was depositional, whereas artificial lateral constriction in the leveed reach produced a sediment budget that was closer to balanced. Although our remote sensing methods provided topographic data over a large area, net volumetric changes were not statistically significant due to the uncertainty associated with bed elevation estimates. We therefore focused on along‐channel spatial differences in bed material transport rather than absolute volumes of sediment. To complement indirect estimates of sediment transport derived by morphological sediment budgeting, we collected field data on bed mobility through a tracer study. Surface and subsurface grain size measurements were combined with bed mobility observations to calculate armoring and dimensionless sediment transport ratios, which indicated that sediment supply exceeded transport capacity in the natural reach and vice versa in the leveed reach. We hypothesize that constriction by levees induced an initial phase of incision and bed armoring. Because levees prevented bank erosion, the channel excavated sediment by migrating rapidly across the restricted braidplain and eroding bars and islands. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号