首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   1篇
  国内免费   4篇
测绘学   1篇
大气科学   8篇
地球物理   14篇
地质学   34篇
海洋学   1篇
综合类   6篇
自然地理   1篇
  2023年   1篇
  2022年   3篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2018年   8篇
  2017年   10篇
  2016年   8篇
  2015年   2篇
  2014年   10篇
  2013年   9篇
  2011年   2篇
  2010年   2篇
  2009年   1篇
  2006年   1篇
  2005年   3篇
排序方式: 共有65条查询结果,搜索用时 15 毫秒
31.
Water scarcity is a challenge in many arid and semi-arid regions; this may lead to a series of environmental problems and could be stressed even further by the effects from climate change. This study focused on the water resource management in Shanshan County, an inland arid region located in northwestern China with a long history of groundwater overexploitation. A model of the supply and demand system in the study area from 2006 to 2030, including effects from global climate change, was developed using a system dynamics (SD) modeling tool. This SD model was used to 1) explore the best water-resource management options by testing system responses under various scenarios and 2) identify the principal factors affecting the responses, aiming for a balance of the groundwater system and sustainable socio-economic development. Three causes were identified as primarily responsible for water issues in Shanshan: low water-use efficiency, low water reuse, and increase in industrial water demand. To address these causes, a combined scenario was designed and simulated, which was able to keep the water deficiency under 5% by 2030. The model provided some insights into the dynamic interrelations that generate system behavior and the key factors in the system that govern water demand and supply. The model as well as the study results may be useful in water resources management in Shanshan and may be applied, with appropriate modifications, to other regions facing similar water management challenges.  相似文献   
32.
Co supported on ZSM-5 (Co-ZSM-5) catalysts was synthesized by wet ion exchange (WIE), impregnation (IM), and in situ hydrothermal (IHT) methods. Their adsorptive catalytic activities for the removal of VOC’s [Benzene, Toluene, Ethylbenzene and Toluene (BTEX)] in air were tested. The physicochemical properties were investigated by XRD, FTIR, SEM, XPS, and low-temperature N2 adsorption. The results indicate that the catalytic performance of Co-ZSM-5 for VOC’s abatement is effective and the synthesis methods reasonably influence the catalytic activity of Co-ZSM-5. Among three samples prepared by three different methods, the catalyst synthesized by the hydrothermal method possesses the highest adsorptive catalytic activity for BTEX oxidation. The optimized contact time was 60 min. The catalytic activities of the prepared catalysts are varied in the order of IHT > IM > WIE based on the combined removal capacity 59.24 > 34.46 > 23.82 (mg/g). For the Co-ZSM-5 WIE catalysts, the procedure has an evident effect on their catalytic performance. For example, the WIE catalysts prepared with cobalt chloride (II) by ion exchange have a higher acidity and surface area than the catalyst prepared with cobalt chloride (II) by impregnation method but less cobalt content. The excellent performance of IHT catalysts may be endorsed to the better availability of the oxidized form (Co3+), due to high content, higher surface area and acidity. Moreover, the Co-ZSM-5 catalyst synthesized by the IHT method shows high stability after being used.  相似文献   
33.
Development of a well-calibrated, distributed hydrological model for flood forecasting based on rainfall and snowmelt is quite challenging, especially when in situ data is limited or unavailable. This paper presents the study carried out to parameterise the Integrated Flood Analysis System (IFAS) model for the trans-boundary, scarcely gauged catchments of Jhelum and Chenab rivers in Pakistan. Rainfall-runoff analysis was performed with a two-layered tank configuration, integrating snowmelt and dam and barrage operation from the very upstream in India to Trimmu Barrage in Pakistan. A grid size of 5?×?5 km was considered. Global map topography, land cover and soil data was utilised. The model was tested considering different magnitudes of floods of the years 2014, 2015 and 2017. The results showed that the satellite rainfall product, i.e. Global Satellite Mapping of Precipitation (GSMaP-NRT), underestimated the rainfall volume, compared to the ground-gauged rainfall. The GSMaP-IF correction method showed poor performance owing to the lack of ground observatory rainfall data for correcting the trans-boundary part of the basin. The GSMaP-Type1 correction method showed good results, except for the confluence point where complex flow conditions were not properly reproduced by the model. In addition, the incorporation of dam and barrages in the model improved the simulated flow results. It is concluded that the satellite rainfall estimates must be corrected to improve the results. Snowmelt module estimated the snowmelt contribution as 3 to 7% and 4 to 23% of the average daily discharge during the monsoon season at Mangla Dam and Marala Barrage, respectively, during 2014 and 2015. This study assessed various correction methods and concluded that the model and methodology used in the study functioned well with suitable precipitation.  相似文献   
34.
The southwestern Sabzevar basin is the north of Central Iranian Microcontinent hosts abundant mineral deposits, including exhalative Mn mineralization and Cu-Zn volcanogenic massive sulfide (VMS) deposits. Amongst them, the Nudeh Besshi-type Cu–Zn volcanogenic massive sulfide (VMS) deposit is hosted within the lower part of a Late Cretaceous volcano-sedimentary sequence composed of alkali olivine basalt flows and tuffaceous silty sandstone. Based on investigations into the ore geometry, mineralogy, and texture, we recognized three different ore facies: (1) a stockwork of sulfide-bearing quartz veins cutting across the footwall volcano-sedimentary rocks and representing the stringer zone; (2) a massive ore type, displaying replacement texture with pyrite, chalcopyrite, sphalerite, friedrichite, and minor magnetite; and (3) a bedded ore type, with laminated to disseminated pyrite and chalcopyrite. EPMA studies indicate a distinctive minor element distribution between the different ore types of the Nudeh deposit. The Fe content in the sphalerite ranges from 0.65–1.80?wt.%, indicating the Fe-poor nature of the sphalerite. However, the Cd content in sphalerite ranged between 0.164–0.278?wt.%. According to the mineral compositions, Zn, Se, and Ag are found in bornite as minor elements. In the bedded ore facies, the pyrite contains higher levels of Se (up to 0.35?wt.%). The Zn content in the friedrichite in all of the ore samples is low. The Co/Ni ratios in pyrite from the Nudeh ore are lower than those of most magmatic deposits, but are similar to those from volcanogenic deposits, and hence support the proposed hydrothermal origin of the deposit. Two generations of quartz, Q1 and Q2 in the stockwork veins, contain primary fluid inclusions and these contain two phases (liquid and vapor). The lack of vapor-rich inclusions or variable liquid/vapor ratios indicate that the fluids did not boil at the site of trapping. Salinity for both Q1 and Q2 fluid inclusions ranges between 2.2–6.8?wt.% eq. NaCl. Homogenization temperatures for inclusions in the Q1 and Q2 veins average at about 296?°C and are similar to the temperatures of hydrothermal fluids discharged through vents in many modern seafloor VMS deposit. The Nudeh Besshi-type VMS deposit appears to have formed on the seafloor and based on the salinity and temperature constraints from the underlying stockwork, a buoyancy plume model is proposed as a mechanism for precipitation.  相似文献   
35.
Land suitability evaluation is prerequisite for assessing the limitations for sustainable land use planning. We used ten site specific criteria (rainfall, texture, drainage, soil depth, slope, distance to major road, distance to nearest sugar mill, erosion hazard, risk of flooding and pH) and applied weighted multi-criteria evaluation (MCE) technique in a geographic information system (GIS) environment to evaluate land suitability for sugarcane cultivation in Bijnor district, India. The weightage of all the parameters was calculated through fuzzy analytical hierarchy process. Sugarcane suitability map was prepared integrating various parameters through weighted overlay analysis. The map was categorized as highly suitable (S1), moderately suitable (S2), marginally suitable (S3) and unsuitable (N). The analysis revealed that of the total cultivable land of the district, largest area (61%) was highly suitable followed by moderately suitable (24%), marginally suitable (7%) and unsuitable (8%) for sugarcane cultivation. Nagina, Najibabad and Bijnor sub-districts need attention of land managers and policy makers to remove the limitations and increase the suitability of sugarcane in such areas. Only 7% area was unsuitable for sugarcane cultivation. Slope, soil depth and erosion hazard were the major limiting factors making the land unsuitable for sugarcane cultivation. Therefore, these areas should be given priority for land and soil restoration efforts. The study showed effectiveness of integrated GIS and MCE approach for land suitability analysis of sugarcane.  相似文献   
36.
Vizianagaram–Srikakulam coastal shoreline consisting of beaches, mangrove swamps, tidal channel and mudflats is one of the vulnerable coasts in Andhra Pradesh, India. Five site-specific parameters, namely rate of geomorphology, coastal elevation, coastal slope, shoreline change and mean significant wave height, were chosen for constructing coastal vulnerability index and assessing coastal landscape vulnerability. The findings revealed a shift of 2.5 km in shoreline towards the land surface because of constant erosion and that of 1.82 km towards the sea due to accretion during 1997–2017. The rate of high erosion was found in zones IV and V, and high accretion was found in zones II and III. Coastal vulnerability index analysis revealed constant erosion along shoreline and sea level rise in the study area. Most of the coast in zone V has recorded very high vulnerability due to erosion, high slope, significant wave height and sea level rise. Erosion and accretion, significant wave height, sea level rise and slope are attributed to high vulnerability in zones III and IV. Zone II recorded moderate vulnerability. Relatively lower slope, mean sea wave height and sea level rise have made this zone moderately vulnerable. Very low vulnerability was found in zone I, and low vulnerability was recorded in zone II. Accretion, low slope and low sea level rise were found to be causative factors of lower vulnerability. Thus, zones III, IV and V should be accorded higher priorities for coastal management. The findings can be helpful in coastal land planning and management and preparing emergency plans of the coastal ecosystems.  相似文献   
37.
Computer-based Model for Flood Evacuation Emergency Planning   总被引:5,自引:0,他引:5  
A computerized simulation model for capturing human behavior during flood emergency evacuation is developed using a system dynamics approach. It simulates the acceptance of evacuation orders by the residents of the area under threat; number of families in the process of evacuation; and time required for all evacuees to reach safety. The model is conceptualized around the flooding conditions (physical and management) and the main set of social and mental factors that determine human behavior before and during the flood evacuation. The number of families under the flood threat, population in the process of evacuation, inundation of refuge routes, flood conditions (precipitation, river elevation, etc.), and different flood warnings and evacuation orders related variables are among the large set of variables included in the model. They are linked to the concern that leads to the danger recognition, which triggers evacuation decisions that determine the number of people being evacuated. The main purpose of the model is to assess the effectiveness of different flood emergency management procedures. Each procedure consists of the choice of flood warning method, warning consistency, timing of evacuation order, coherence of the community, upstream flooding conditions, and set of weights assigned to different warning distribution methods. Model use and effectiveness are tested through the evaluation of the effectiveness of different flood evacuation emergency options in the Red River Basin, Canada.  相似文献   
38.
39.
40.
Analyzing groundwater hydrologic equations related to karstic aquifers and spring hydrograph simulation have become the focus of many researches. Having double or triple porosity structure, mixed flow nature, and varying conduit permeability have made these formations become complex heterogenic systems with great temporal and spatial hydrodynamic variability. In this paper, a conditional sequential gaussian simulation (SGS) is used to simulate monthly flow data of five karstic springs with different hydrogeological properties, located in Zagros Mountain Chain, in western Iran. To evaluate the performance of the SGS algorithm, the results are compared with those of an autoregressive integrated moving average (ARIMA) model. The results demonstrate the efficiency of the SGS model in simulation of monthly flows compared to the ARIMA model. They also show the suitability of this model for handling uncertainty associated with karstic spring flows through generation of several equally probable stochastic realizations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号