首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   193篇
  免费   60篇
  国内免费   65篇
大气科学   3篇
地球物理   55篇
地质学   225篇
海洋学   25篇
天文学   1篇
综合类   2篇
自然地理   7篇
  2023年   2篇
  2022年   2篇
  2021年   6篇
  2020年   10篇
  2019年   16篇
  2018年   10篇
  2017年   10篇
  2016年   13篇
  2015年   8篇
  2014年   20篇
  2013年   24篇
  2012年   17篇
  2011年   15篇
  2010年   15篇
  2009年   26篇
  2008年   18篇
  2007年   15篇
  2006年   15篇
  2005年   14篇
  2004年   7篇
  2003年   6篇
  2002年   3篇
  2001年   3篇
  2000年   3篇
  1999年   6篇
  1998年   4篇
  1997年   9篇
  1996年   5篇
  1995年   1篇
  1994年   3篇
  1993年   4篇
  1992年   2篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1954年   1篇
排序方式: 共有318条查询结果,搜索用时 31 毫秒
31.
对珠江口盆地番禺低隆起东部L16井中新统珠江组的岩心观察分析,岩性包括碎屑岩、碳酸盐岩以及碎屑-碳酸盐的混积岩。珠江组可划分为11种沉积微相类型;建立了三角洲—滨岸—碎屑与碳酸盐混积滨岸—碳酸盐台地—浅海陆棚(23.8 Ma~18.5 Ma)沉积演化序列。地震地质解释证实了珠江组早期东沙三角洲的存在;古珠江三角洲与东沙三角洲构成了研究区珠江组下段的沉积主体。恢复了研究区珠江组沉积相及其演化,重点刻画了SQ2—TST时期由陆到海的变迁,而海平面变化是这一变迁的主要控制因素。  相似文献   
32.
Present rate of uplift in Fennoscandia from GRACE and absolute gravimetry   总被引:2,自引:0,他引:2  
Fennoscandia is a key region for studying effects of glacial isostatic adjustment. The associated mass variations can be detected by the Gravity Recovery and Climate Experiment (GRACE) satellite mission, which observes the Earth's gravity field since April 2002, as well as by absolute gravimetry field campaigns. Since 2003, annual absolute gravity (AG) measurements have been performed in Fennoscandia by the Institut für Erdmessung (IfE, Institute of Geodesy) of the Leibniz Universität Hannover, Germany, within a multi-national cooperation. This offers a unique opportunity for validation and evaluation of the GRACE results. In this preliminary study, the GRACE results are compared to secular gravity changes based on the surveys from 2004 to 2007 with the FG5-220 gravimeter of the IfE.The results from GRACE monthly solutions provided by different analysis centres show temporal gravity variations in Fennoscandia. The included secular variations are in good agreement with former studies. The uplift centre is located west of the Bothnian Bay, the whole uplift area comprises Northern Europe. Nevertheless, the differences between the GRACE solutions are larger than expected and the different centre-specific processing techniques have a very strong effect on possible interpretations of GRACE results. The comparison of GRACE to the AG measurements reveals that the determined trends fit well with results from GRACE at selected stations, especially for the solution provided by the GFZ. Variations of land hydrology clearly influence results from GRACE and the AG measurements.  相似文献   
33.
Geological mapping, interpreted cross sections, structural analyses and residual thickness maps were used to characterize the evolution of stress setting, structure and stratigraphic distribution of the Chepaizi Uplift, which is a NW-SE trending structure located in the Western Junggar Basin. The NS-trending faults show an important transpressional phase during the Late Permian, as demonstrated by tectonic stress field and stratigraphic thickness variations. A major compressional thrusting and strike-slip phase during the Late Jurassic created a series of NW-SE faults that originated by the large-scale uplift event in the Northern Tianshan. Faults were reactivated as thrust and dextral strike-slip faults. In addition, the angular unconformity observed between Jurassic and Cretaceous provide evidence of this tectonic event. Lots of normal faults indicate that the area records southward tilting and regional derived extensional stress that took place during the Neogene. Before that, thick Early Cenozoic strata are widely deposited. The balanced cross-section highlights the evolution of stress setting and stratigraphic distribution of the Chepaizi Uplift.  相似文献   
34.
赵珍  陆露  吴珍汉 《地学前缘》2019,26(2):249-263
本文综合磷灰石裂变径迹年龄(113~43 Ma)、锆石裂变径迹年龄(169~103 Ma)、锆石U-Pb年龄(215~206 Ma)、黑云母K-Ar年龄(186~178 Ma),通过磷灰石热史模拟,TASC图谱分析和矿物封闭温度年龄等手段,获得了中央隆起晚三叠世至今较为完整的冷却抬升历史。中央隆起主要经历了早侏罗世、晚侏罗世-早白垩世、晚白垩世-中新世早期和中新世晚期至今四期冷却事件,与南北羌塘板块后碰撞伸展、拉萨羌塘板块碰撞、新特提斯洋板片俯冲、印度欧亚板块碰撞以及中新世南北向走滑伸展存在动力学联系,造成11.4 km、2.85 km、4.3~5 km和0.85 km的抬升量。中央隆起在侏罗纪相对两侧盆地抬升,随着两侧盆地经历了侏罗纪的沉积增厚,与两侧盆地高差减小,在早白垩世早期可能位于海平面附近,随后快速抬升至2~2.5 km,统一接受晚白垩世红层沉积,并经历长期持续的逆冲推覆构造活动,进一步抬升至5 km,随后受到中新世古大湖夷平和南北向伸展作用影响,中央隆起相对盆地发生差异抬升。  相似文献   
35.
Normal faults occur in a variety of geodynamic environments, both in areas of subsidence and uplift. Normal faults may have slip rates faster or slower than regional subsidence or uplift rates. The total subsidence may be defined as the sum of the hangingwall subsidence generated by the normal fault and the regional subsidence or uplift rate. Positive total subsidence obviously increases the accommodation space (e.g., passive margins and back-arc basins), in contrast with negative total subsidence (e.g., orogens). Where the hangingwall subsidence rate is faster than the sedimentation rate in cases of both positive and negative total subsidence, the facies and thickness of the syntectonic stratigraphic package may vary from the hangingwall to the footwall. A hangingwall subsidence rate slower than sedimentation rate only results in a larger thickness of the strata growing in the hangingwall, with no facies changes and no morphological step at the surface. The isostatic footwall uplift is also proportional to the amount and density of the sediments filling the half-graben and therefore it should be more significant when the hangingwall subsidence rate is higher than sedimentation rate.  相似文献   
36.
青藏高原隆升作用于大气临界高度的数值研究   总被引:21,自引:4,他引:17  
张耀存  钱永甫 《气象学报》1999,57(2):157-167
利用P-σ混合坐标系全球大气环流模式研究了青藏高原隆升作用于大气临界高度问题,通过对数值试验结果的分析进一步证实了在高原隆升的过程中存在着一个临界高度,这个高度在夏季约为1500~2000m。当高原总体平均高度超过临界高度后,高原周围地区的气流主要以绕流为主,爬坡气流的速度较小,稳定的高原季风开始形成,高原地区范围内为强大的上升运动区,高原南侧和中国东部地区出现一条明显的雨带,随着高原隆升高度的增高,雨带内的降水量逐渐增加,同时高原西侧附近地区形成一个稳定的感热通量大值带  相似文献   
37.
 A first-order leveling survey across the northeast part of the Yellowstone caldera in September 1998 showed that the central caldera floor near Le Hardy Rapids rose 24±5 mm relative to the caldera rim at Lake Butte since the previous survey in September 1995. Annual surveys along the same traverse from 1985 to 1995 tracked progressive subsidence near Le Hardy Rapids at an average rate of –19±1 mm/year. Earlier, less frequent surveys measured net uplift in the same area during 1923–1976 (14±1 mm/year) and 1976–1984 (22±1 mm/year). The resumption of uplift following a decade of subsidence was first detected by satellite synthetic aperture radar interferometry, which revealed approximately 15 mm of uplift in the vicinity of Le Hardy Rapids from July 1995 to June 1997. Radar interferograms show that the center of subsidence shifted from the Sour Creek resurgent dome in the northeast part of the caldera during August 1992 to June 1993 to the Mallard Lake resurgent dome in the southwest part during June 1993 to August 1995. Uplift began at the Sour Creek dome during August 1995 to September 1996 and spread to the Mallard Lake dome by June 1997. The rapidity of these changes and the spatial pattern of surface deformation suggest that ground movements are caused at least in part by accumulation and migration of fluids in two sill-like bodies at 5–10 km depth, near the interface between Yellowstone's magmatic and deep hydrothermal systems. Received: 30 November 1998 / Accepted: 16 April 1999  相似文献   
38.
三叠纪末期大型鄂尔多斯盆地遭受了中生代成盆以来首次较大规模的抬升剥蚀,显著改造了中晚三叠世延长期盆地面貌,并控制了侏罗纪早期沉积格局和油藏分布,对盆地演化及矿产资源分布产生了重要影响。本文利用地质及大量钻井资料揭示了该期构造事件对盆地的剥蚀改造特征,盆地及周邻地区磷灰石裂变径迹年代学记录并约束了此次构造抬升的时限与过程;综合周邻区域构造研究成果,探讨了其发育的动力学背景。结果表明,鄂尔多斯盆地三叠纪末期的剥蚀具西南强、东北弱的特点,西南部大范围内延长组地层残缺不全,剥蚀量最大可达1000余米;前侏罗纪沉积古地貌总体呈西南高、北东低的特点;其抬升时间始于205~190Ma,西南部稍早于盆地腹部,抬升速率大于1℃/Myr,可持续至中侏罗世(约160Ma)。该期抬升剥蚀事件范围可涉及至盆地西南缘更广阔的区域,与同期秦岭造山带内出现的快速抬升冷却事件具有较好的时空耦合关系,是对秦岭造山带区域构造环境转变的响应和纪录。该研究丰富和发展了三叠纪末期构造事件在华北克拉通的影响,对该区油气、煤炭资源的进一步勘探和评价提供了新的思路,具有一定的现实意义。  相似文献   
39.
Part one of this paper reported results from experimental compaction measurements of unconsolidated natural sand samples with different mineralogical compositions and textures. The experimental setup was designed with several cycles of stress loading and unloading applied to the samples. The setup was aimed to simulate a stress condition where sediments underwent episodes of compaction, uplift and erosion. P-wave and S-wave velocities and corresponding petrophysical (porosity and density) properties were reported. In this second part of the paper, rock physics modelling utilizing existing rock physics models to evaluate the model validity for measured data from part one were presented. The results show that a friable sand model, which was established for normally compacted sediments is also capable of describing overconsolidated sediments. The velocity–porosity data plotted along the friable sand lines not only describe sorting deterioration, as has been traditionally explained by other studies, but also variations in pre-consolidation stress or degree of stress release. The deviation of the overconsolidated sands away from the normal compaction trend on the VP/VS and acoustic impedance space shows that various stress paths can be predicted on this domain when utilizing rock physics templates. Fluid saturation sensitivity is found to be lower in overconsolidated sands compared to normally consolidated sands. The sensitivity decreases with increasing pre-consolidation stress. This means detectability for four-dimensional fluid saturation changes can be affected if sediments were pre-stressed and unloaded. Well log data from the Barents Sea show similar patterns to the experimental sand data. The findings allow the development of better rock physics diagnostics of unloaded sediments, and the understanding of expected 4D seismic response during time-lapse seismic monitoring of uplifted basins. The studied outcomes also reveal an insight into the friable sand model that its diagnostic value is not only for describing sorting microtextures, but also pre-consolidation stress history. The outcome extends the model application for pre-consolidation stress estimation, for any unconsolidated sands experiencing similar unloading stress conditions to this study.  相似文献   
40.
Two large oil fields (QHD32-6 and QHD33-1), located in the middle part of the Shijiutuo Uplift, have generally suffered mild biodegradation. Based on multivariate statistical analysis of the biomarker parameters, this study discussed the origin and charging directions for these two oil fields.In contrast to Ed3-derived oil, all available oil samples from these two large oil fields displayed low C19/C23, C24/C26 and high G/H and 4-MSI, which are attributed to the mixtures of oils derived from the Shahejie (Es1 and Es3) source rocks. Oils in QHD32-6, which contain relatively more Es3-derived oil, are called Group I oils, and most oils in QHD33-1, which share relatively more Es1-derived oil, are called Group II oils. Our mixed oil experiments reveal the predominant Es3- and Es1-derived oil contribution for Group I and Group II oil groups, respectively; however, the selection of end member oils warrants further research.Based on comparisons of biomarker parameters, the QHD32-6 oil field was mainly charged in the north by oil generated from Shahejie formation source rocks in the Bozhong depression. However, oils from the north of QHD32-6 field display a remarkable difference to the oils in the south of this field, which may indicate that a charging pathway exists from the QHD33-1 field. Considering the variations in biomarker compositions in the west to -east and northwest to -southeast sections across the QHD33-1 and QHD32-6 oil fields, it can be deduced that Es3-sourced oil migrated westward to the QHD32-6 traps, and then charging by Es1 oil from the Bozhong Sag resulted in the QHD33-1 oil field being characterized by the mixture of Es3- and Es1-sourced oil. Moreover, migration of Es1-derived oil from the Qinnan Sag was not identified, implying that the QHD33-1 oil field is mainly charged from the northeast of the Bozhong Sag.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号