首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3186篇
  免费   700篇
  国内免费   1121篇
测绘学   45篇
大气科学   134篇
地球物理   238篇
地质学   3127篇
海洋学   997篇
天文学   9篇
综合类   223篇
自然地理   234篇
  2024年   23篇
  2023年   110篇
  2022年   148篇
  2021年   129篇
  2020年   129篇
  2019年   138篇
  2018年   100篇
  2017年   116篇
  2016年   103篇
  2015年   121篇
  2014年   194篇
  2013年   168篇
  2012年   166篇
  2011年   196篇
  2010年   188篇
  2009年   167篇
  2008年   191篇
  2007年   194篇
  2006年   200篇
  2005年   175篇
  2004年   147篇
  2003年   170篇
  2002年   167篇
  2001年   219篇
  2000年   147篇
  1999年   102篇
  1998年   154篇
  1997年   147篇
  1996年   139篇
  1995年   106篇
  1994年   95篇
  1993年   102篇
  1992年   79篇
  1991年   83篇
  1990年   71篇
  1989年   50篇
  1988年   16篇
  1987年   15篇
  1986年   6篇
  1985年   2篇
  1982年   2篇
  1981年   2篇
  1980年   3篇
  1955年   3篇
  1951年   1篇
  1950年   5篇
  1946年   1篇
  1941年   2篇
  1938年   2篇
  1930年   6篇
排序方式: 共有5007条查询结果,搜索用时 93 毫秒
31.
丁青蛇绿岩位于班公湖-怒江缝合带东段,是该缝合带出露面积最大的蛇绿岩。为查明岩体成因,在丁青东岩体中实施了一口165.19m的钻孔。除最顶部有约0.5m厚的第四系残坡积物外,其余均为地幔橄榄岩。结合显微镜鉴定将岩心划分出17个岩性单元层,岩性主要以方辉橄榄岩为主,夹少量纯橄岩和含铬铁矿纯橄岩。地幔橄榄岩中橄榄石的Fo变化于88.79~93.73,铬尖晶石的Cr#变化于44.33~81.66,揭示丁青地幔橄榄岩可能经历过约20%~40%的中高度部分熔融作用;全岩地球化学分析表明其具有富镁(MgO=45.98%~49.45%)、贫铝(Al2O3=0.19%~1.37%)和贫钙(CaO=0.28%~0.70%)的特点,属于熔融程度较高的地幔残余物质。岩石具有明显不同于阿尔卑斯蛇绿岩的轻稀土元素富集特征,指示区内地幔橄榄岩先经历了较强程度的部分熔融,后经历了俯冲消减过程中的流体交代。利用地幔橄榄岩中的铬尖晶石成分计算母熔体Al2O3含量对应的FeO/MgO值,与不同构造环境原始岩浆成分相比较,发现丁青地幔橄榄岩母熔体大多处于玻安岩中。纯橄岩氧逸度估算FMQ=-3.05~-0.71,方辉橄榄岩氧逸度FMQ=-3.89~+1.47,显示丁青地幔橄榄岩有俯冲作用的参与。通过丁青钻孔岩心的研究,提出丁青东岩体可能形成于俯冲带之上的弧前环境这一观点。  相似文献   
32.
王晶  谢作明  王佳  杨洋  刘恩杨 《地球科学》2021,46(2):642-651
硫在铁和砷的生物地球化学循环中发挥着重要作用,但地下水系统中硫循环的中间产物S(0)对细菌转化铁和砷的影响尚不清楚.采用室内模拟实验,研究硫参与下细菌D2201对液相和载砷针铁矿中Fe(III)和As(V)的还原作用.结果表明:细菌D2201具有很强的铁还原能力,可以将液相中74%的Fe(III)还原;加入硫后,细菌还原S(0)产生的S(-II)使铁还原率提高到94%.但是,硫没有明显影响细菌对砷的还原.在实验初期,细菌明显加速了载砷针铁矿的还原,最终还原释放到液相中的Fe(II)浓度为32.12 μmol/L;硫的加入增强了细菌对载砷针铁矿的还原,还原溶解的Fe(II)增加至284.13 μmol/L,同时,砷的释放量也增加了1.6倍.这些结果表明硫显著促进了细菌对针铁矿的还原溶解并加速砷的释放.XRD和SEM-EDS结果显示,细菌还原针铁矿但不改变其矿相,而硫的加入也仅使矿物发生一定程度的团聚,并没有使其转变为其他矿物,也未导致砷的再吸附.   相似文献   
33.
梁正伟  田世洪 《地球科学》2021,46(12):4405-4426
铀“稳定”同位素(238U/235U,通常记为δ238U)目前已经成为非传统稳定同位素领域的研究热点.20世纪人们曾经认为铀同位素不存在分馏,因而铀同位素研究发展缓慢.然而随着分析技术的发展,人们发现自然界中铀同位素238U和235U存在显著的分馏,可以作为良好的示踪工具.迄今为止,已经有大量铀同位素作为古氧化还原指标的研究发表,比如用铀同位素示踪地球近地表环境氧含量随时间的演化以及生物大灭绝与海洋氧化还原状态之间的潜在关系.尽管铀同位素在水圈和生物圈协同演化领域取得了丰硕的研究成果,但仍有不少问题亟待深入解决.例如,生物和非生物还原高价铀的微观反应过程对铀同位素分馏的影响,以及铀同位素如何示踪铀矿物质来源等.系统总结了铀同位素地球化学最近十年的研究进展,希望将来铀同位素在铀多金属矿床成因和高温地球化学领域能有所突破.   相似文献   
34.
杨兵  金承胜  刘欣  韦一 《地质学报》2021,95(12):3858-3868
磷是重要的营养元素,与古环境和生命演化密切相关.在埃迪卡拉纪—寒武纪之交,伴随着骨骼化动物的辐射,华南甚至全球广泛沉积了大量磷酸盐,这暗示磷是古环境的变化与生命演化之间关系的桥梁.然而,目前,磷块岩的沉积环境和形成机制尚不明确.为探究磷酸盐富集的沉积环境和形成机理,本文研究了华南寒武纪早期梅树村剖面磷块岩的磷酸盐聚集形式、黄铁矿形态学和稀土元素.磷块岩主要是由结晶氟磷酸钙、隐晶质氟磷酸钙和铁氧化物组成.稀土配分模式均为"帽型"配分模式,与沉积物中铁-锰还原带之中的稀土配分模式类似,表明稀土元素遭受了早期成岩的影响.磷块岩中没有草莓状黄铁矿和较低的Ce负异常(Ce/Ce*=0.50~0.82,平均值为0.70),暗示磷块岩沉积于氧化/次氧化的沉积环境.Eu元素未发生异常(Eu/Eu*=0.92~1.08,平均值为0.98),暗示磷块岩可能未受到热液作用的影响.较高的Y/Ho比值(55.3~74.5,平均值为63.6),与海水Y/Ho比值相似,表明磷块岩来源于海水.鉴于华南寒武纪早期广泛的氧化事件、缺氧分层的海水化学结构和上升流活动,本文认为磷块岩的形成源于氧化背景下较高的磷酸盐浓度和深部还原环境中的磷酸盐随上升流活动携带至氧化-次氧化浅水区域.  相似文献   
35.
新疆萨热克铜矿为砂砾岩型铜矿床,赋矿地层为上侏罗统库孜贡苏组砂砾岩.矿体以层状为主,并有裂隙、碎裂构造岩相伴生,常见辉铜矿等金属硫化物与石英、方解石和白云石等胶结物沿砾石间隙或岩石裂隙充填分布.为了揭示成矿流体的性质、来源,文章对矿体中呈脉状产出的石英和碳酸盐矿物(方解石和白云石)中的流体包裹体和碳、氢-氧同位素进行了测定.研究表明:石英和方解石中流体包裹体的气相分数通常为5%~15%,均一温度变化范围88~249℃,平均为172℃;盐度变化范围为6.30%~12.51%,平均为9.46%,为中低温、中低盐度成矿流体.脉状方解石中的δD变化范围为-72‰~-62‰,平均-67.3‰;δ18O变化范围为3.9‰~8.0‰,平均5.3‰,脉状石英中 δD变化范围为-101.7‰~-87.1‰,平均-93.3‰;δ18O变化范围5.1‰~7.5‰,平均6.6‰,氢-氧同位素组成主要落在岩浆水和变质水重叠区及其附近.方解石(白云石)中的δ18O变化范围为-15.1‰~-9.5‰,平均为-12.9‰;δ13C变化范围为-2.5‰~-2.0‰,平均为-0.8‰.同位素组成显示其位于海相碳酸盐岩区左侧附近,与研究区石炭系等碳酸盐岩的碳、氧同位素相似,表明铜矿石中的脉状方解石脉(无机碳)主要与海相碳酸盐岩的溶解作用有关.综合考虑上述结果,文章推测在萨热克铜矿的北矿段深部可能存在隐伏岩体,成矿流体为变质流体与岩浆热液叠加形成的具中、低温,中、低盐度特征的混合流体,该研究区深部存在具有进一步找矿的潜力.  相似文献   
36.
孙嘉  段先哲  李玉彬 《矿床地质》2021,40(5):1085-1099
西藏多龙矿集区发育世界典型的斑岩铜矿系统,文章选取区内多个代表性矿床开展硫同位素研究,并结合前人数据,为探讨该成矿系统成矿物质来源、流体演化过程提供了新证据.研究表明,波龙、拿若、拿厅、拿顿和铁格隆南矿床δ34S平均值相似(接近于0),指示含矿岩浆提供了各矿床所需的硫元素.此外,区内典型矿床流体演化过程可分为2类:①流体演化主要受控于温度变化,表现为δ34S随温度降低而降低(如拿顿矿床);②流体演化受温度和氧化还原状态共同影响,表现为δ34S随温度降低而升高(如:波龙和拿若矿床),或是随温度降低,δ34S波动变化范围较大(如拿厅和铁格隆南矿床).结合岩相学证据,文章推测热液体系氧化还原状态的变化是由水岩反应所导致,最后,文章提出多龙矿集区内矿化阶段硫化物通常具有较低的δ34S,指示成矿流体为高氧化性流体,并且该特征在类似矿床的找矿勘查工作中也可发挥积极的指示作用.  相似文献   
37.
屈婧祎  童曼  袁松虎 《地球科学》2021,46(2):632-641
地质微生物是沉积环境中铁、锰氧化还原循环的主要驱动因子,铁锰共存环境中二价铁氧化对不同铁、锰循环功能微生物活性的影响差异和机制尚不清楚.以铁还原菌Shewanella oneidensis MR-1、铁氧化菌Pseudogulbenkiania sp.strain 2002、锰氧化菌Pseudomonas putida MnB1和Leptothrix discophora SS-1作为代表性的铁、锰循环功能微生物,利用平板计数、荧光显微镜等手段探究了Fe(II)氧化对功能微生物活性的影响差异及机制.结果表明0.05 mM Fe2+氧化60 min可使MR-1和MnB1的活菌数量降低4~5个数量级,SS-1及S.2002无显著失活.Fe(II)氧化产生的吸附态。OH和胞内。OH是细菌失活的主要原因,胞外H2O2、胞外游离态。OH和三价铁氧化物是细菌失活的次要原因,SS-1及S.2002产生了氧化应激反应,成功抵御了活性氧化物种.   相似文献   
38.
超临界甲烷密度不仅是非常规天然气资源量计算与吸附能力测定的重要参数,同时也是衡量超临界甲烷扩散效率与溶解有机物能力的主要指标。通过对比分析各种气体状态方程的适用性,认为基于亥姆霍兹能量基本状态方程可以准确计算0~30 MPa、270~360 K条件下甲烷的密度。利用Microsoft Office Excel编写了甲烷密度的计算程序,与NIST (美国国家标准与技术研究院)商业软件计算结果相比,误差小于0.05%。分析了0~100 MPa、270~360 K范围内甲烷密度的变化规律。结果表明,甲烷密度随压力增大而增大,在低于30 MPa时增速较大且对温度的敏感性较强,高于30 MPa时增速逐渐变缓,且敏感性减弱。在煤层原位条件下随着埋深的增大,甲烷密度随温度升高而减小,随压力增大而增大;在温度与压力共同作用下,甲烷密度呈先增速不变、近似线性增加,后增速逐渐减小、凸曲线形增加的变化规律。游离态甲烷密度受温度的影响比吸附态甲烷小,是深部煤层气资源增量的主要贡献者。研究结果为深部煤层气赋存及其潜力预测提供了基础参数。   相似文献   
39.
煤基碳排放构成了中国碳排放总量中最重要的部分,做好煤基碳减排和煤炭高效洁净低碳化利用是实现“碳中和”国家目标的重要途径,碳中和背景下的煤地质学发展值得关注。系统评述与碳中和相关的煤地质学研究领域,分析煤地质学在碳中和研究与工程实践中的作用和应用前景,探讨碳中和背景下煤地质学的重要发展方向。取得以下认识:推进清洁煤地质研究、服务煤的高效洁净化燃烧,勘探开发煤系天然气低碳燃料、优化一次能源结构和化石能源结构,开展煤化工资源勘查与开发地质保障研究、推动煤炭的低碳能源转化和新型煤化工产业发展,深化瓦斯地质研究、提高煤矿瓦斯(井下)抽采率、控制煤矿瓦斯的大气排放和泄漏,研究煤层甲烷天然逸散和煤层自燃排放、控制煤层露头的天然排放,发展煤层CO2地质封存与煤层气强化开发(CO2-ECBM)技术、推动碳捕获、利用与封存(CCUS)技术发展及其在火力电厂烟气碳减排中的商业化应用,研究煤炭勘查企业的碳足迹、实现企业净零排放,是与煤地质学紧密相关的碳减排技术路径;其中煤层甲烷与煤系气高效勘探开发、深部煤层CO2-ECBM、煤层露头气体逸散与自燃发火控制、洁净煤地质与煤炭精细勘查是碳中和背景下煤地质学优先发展的重要领域。   相似文献   
40.
南极冰芯记录着过去气温、降水等气候环境参数以及影响其变化的太阳活动、火山作用等各种因子变化,是研究古气候、古环境变化及其影响机制的良好载体.东南极LGB69冰芯高分辨率的地球化学分析表明:①该冰芯的水当量年平均积累率高达259 mm/a,利用δ18O和Na+季节性变化和火山喷发标志层,通过数年层的方法确定其沉积时间为290 a(1712-2001年)±2 a;②该冰芯δ18O与邻近的戴维斯站气温距平5年滑动平均值(1968-2001年)之间具有良好的正相关关系,是有效的气温代用指标,1712-2001年该地区气温是一个波动变暖的过程,划分为4个阶段,小冰期结束于1914年,20世纪5年滑动平均气温距平年平均值较小冰期末次冷阶段升高0.30C;③Morlet小波分析表明,1712-2001年该冰芯δ18O(气温)和积累率(降水量)均存在约11年、约22年和约60年的共同周期,多重时间周期的嵌套表明其对气候变化非常敏感.上述研究结果为进一步重建南极气候冷暖、降水序列变化,以及研究太阳活动、火山作用等因子对气候变化影响的内在规律奠定了基础.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号