首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   26篇
  国内免费   43篇
测绘学   1篇
大气科学   94篇
地球物理   1篇
海洋学   1篇
  2024年   1篇
  2023年   5篇
  2022年   8篇
  2021年   3篇
  2020年   5篇
  2019年   5篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   5篇
  2014年   5篇
  2013年   3篇
  2011年   3篇
  2010年   4篇
  2009年   2篇
  2008年   5篇
  2007年   7篇
  2006年   4篇
  2005年   8篇
  2004年   2篇
  2003年   4篇
  2002年   1篇
  2001年   1篇
  2000年   4篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
排序方式: 共有97条查询结果,搜索用时 15 毫秒
31.
姚秀萍  寿绍文 《气象科学》1994,14(2):114-120
利用原始方程模式的Sawyer-Eliassen次级环流方程,对由5个爆发性发展的台风所合成的要素场进行了次级环流的诊断.结果表明,在各强迫项中,地转形变和非绝热加热强迫作用较大.大尺度加热主要加强中低层环沈,对流加热则主要加强中高层环流.台风爆发性发展前后,动力强迫和热力强迫的相对重要性不同.在台风爆发性发展时,非绝热加热强迫的相对重要性明显加大。  相似文献   
32.
利用TBB资料对西太平洋副热带高压特征的分析和描述   总被引:14,自引:4,他引:10  
利用卫星TBB资料和500 hPa位势高度场资料, 分析了西太平洋副热带高压(下称西太副高)的北进及南撤特征。结果表明: 西太平洋副热带地区的TBB场呈带状分布, >275K的TBB区随季节的变化从1月至12月表现为先北跳又南落之势, 它与西太副高的北跳和南落同步, 其大值区可以表征西太副高的范围。西太副高脊线(500 hPa上的u=0 线)与TBB大值区轴线的走向基本一致。不同季节可以不同的TBB值来描述西太副高。同时指出, 以TBB大值区所描述的西太副高与雨区的配置较588 gpdm等高线与雨区的配置要好, 并且可以避免588 gpdm等高线所产生的假象。另外, 每3 h TBB场的分析可为暴雨的逐3 h预报提供参考。  相似文献   
33.
利用NCEP/NCAR日平均再分析资料,对梅雨期热带对流层上空东风带扰动影响西太平洋副热带高压短期东退的过程进行了合成诊断分析.结果表明:梅雨期西太平洋副热带高压(简称西太副高)的短期东退与低纬热带地区上宅东风带扰动存在着密切的联系,本文给出了在西太副高异常东退前后东风带扰动的结构及其演变特征,揭示了东风带扰动所对应的...  相似文献   
34.
应用NCEP再分析资料,分析了2014年5月8—9日发生在华南的一次暖区暴雨过程,研究高层动力强迫对此次华南暖区暴雨的影响。此次暴雨过程发生在暖湿的西南气流中,无明显天气尺度锋面系统影响,属于华南暖区暴雨过程。根据中尺度对流系统(MCS)的生消发展特征,可以将其分为5月8日与9日两个阶段,第一阶段具有显著的回流型暖区暴雨的特征,主要研究该阶段。研究发现,高PV扰动沿对流层高层南亚高压东北侧的西北气流下滑东移,导致IPV正异常,其东侧的辐散气流显著发展,在高层辐散气流的抽吸作用下,上升运动首先从中上层发展起来。在过程发展前期,IPV正异常主要是由平流作用引起,且在其东侧诱发出南风异常,进而导致辐散气流发展。当降水发生后,潜热加热反馈作用使高层辐散气流进一步加强,此时,辐散增强是对流发展的结果。此外,低层浅薄偏东风是本次暖区暴雨发生的低层背景场,其与西南风气流汇合,提供有利的低层辐合条件。   相似文献   
35.
中国近海热带气旋强度突变的热力特征   总被引:2,自引:0,他引:2  
应用2000 2006年的NCEP/NCAR再分析资料,通过合成分析和对比分析,利用全型垂直涡度倾向方程,研究中国近海热带气旋强度突变的热力特征.结果表明:(1)突然增强热带气旋在其中心附近对流层高低层均存在视热源Q1的极大值中心,低层Q1在突然增强过程中越来越强;而突然减弱热带气旋在中心附近对流层中层存在Q1的极大值中心,而且在突然减弱过程中Q1越来越弱.视水汽汇Q2的极值中心在热带气旋强度变化过程中位于对流层中层,在突然增强过程中有所增大,而在突然减弱过程中有所减小.(2)Q1的峰值高度在热带气旋突然增强和突然减弱过程中分别位于对流层高层和中层.Q2的峰值高度在热带气旋突然增强过程中不断抬升,而在突然减弱过程中不断降低,这说明积云对流的垂直输送在热带气旋突然增强过程中起到一定作用.(3)热带气旋中心附近对流层中上层非绝热加热随着高度增加、对流层低层垂直非均匀加热的增大有利于热带气旋的突然增强,反之导致热带气旋突然减弱.  相似文献   
36.
2003年夏季梅雨期一次强气旋发展的位涡诊断分析   总被引:10,自引:2,他引:8  
赵兵科  吴国雄  姚秀萍 《大气科学》2008,32(6):1241-1255
通过位涡诊断和回推轨迹分析, 对2003年夏季梅雨期间一次强江淮气旋的发展过程进行了研究。结果表明: 气旋发展初期, 非绝热加热在气旋的低层发展中起了主要作用, 随后由于高层水平平流的增强, 通过垂直平流使高低层大值位涡耦合在一起, 从而使气旋迅速发展。从中、 高、 低层对位涡柱形成所起的作用来看, 低层主要是非绝热加热, 中层是垂直平流, 而高层主要是水平平流; 从构成气旋的气流来说, 在气旋迅速发展阶段, 低层主要以西南暖湿气流为主, 高层 (500 hPa以上) 主要以沿急流轴下降的高层干冷气流和对流层底层流向气旋东北部并迅速上升的暖湿气流为主。高低层冷暖空气的相互作用主要发生在600 hPa及以上层次, 因凝结加热引起的垂直运动通过垂直平流可能在冷暖气流相互作用和上下大位涡的垂直耦合中发挥了重要作用。  相似文献   
37.
In this paper, an explosive cyclone (EC) that occurred over Northeast China in the spring of 2016 is studied by using 6.7 μm FY satellite water vapor (WV) imagery and NCEP (1°×1°) reanalysis data. Moreover, the evolutions of the upper-level jet stream (ULJ), the vertical motions, and the potential vorticity (PV) are analyzed in detail. Results show that different shapes of the WV image dark zones could reflect different stages of the EC. At the pre-explosion stage, a small dark zone and an S-shaped baroclinic leaf cloud can be found on the WV imagery. Then the dark zone expands and the leaf cloud grows into a comma-shaped cloud at the explosively developing stage. At the post-explosion stage, the dark zone brightens, and the spiral cloud forms. The whole process can be well described by the WV imagery. The dynamic dry band associated with the sinking motion and the ULJ can develop into the dry intrusion later, which is an important signal in forecasting the EC and should be paid attention to when analyzing the WV imagery. Furthermore, the mechanism is also analyzed in detail in this article. EC usually occurs in the left-exit region of the 200-hPa jet and the region ahead of the 500-hPa trough where there is significant positive vorticity advection (PVA). When the EC moves onto the sea surface, the decreased friction would favour the development of the EC. The upper-level PVA, the strong convergence at low level, and the divergence at high levels can maintain the strong updraft. Meanwhile, the high PV zone from the upper levels extends downward, approaching the cyclone. Together, they keep the cyclone deepening continuously.  相似文献   
38.
张硕  姚秀萍  巩远发 《气象学报》2019,77(6):1086-1106
利用1981—2016年6—8月每天4次,分辨率为1°×1°的ERA-Interim再分析资料,基于纬向风的经向切变、纬向风速0线和相对涡度3个参数,在计算机客观自动判识青藏高原横切变线(简称高原横切变线)基础上,选取位于33°—35°N的高原横切变线个例13个,采用合成分析技术,研究了高原横切变线结构及演变特征。表明高原横切变线位于青藏高原主体80°—100°E范围内,在500 hPa呈东西走向、水平尺度近2000 km,垂直方向在高原上空可伸展至480 hPa、厚度可达近2 km。高原横切变线出现的环流背景是:500 hPa高纬度两槽两脊,青藏高原两侧分别为带状分布的西太平洋副热带高压(西太副高)和伊朗高压。在动力场上,高原横切变线走向与500 hPa正涡度带轴线走向一致,切变线附近为带状的涡度正值区和上升运动区,对应于无辐散带,辐散/辐合带分布在高原横切变线北/南侧;高原横切变线附近正涡度带垂直可伸展到350 hPa,上升运动伸展至200 hPa,但高原横切变线仅至480 hPa左右,为浅薄的斜压性天气系统,呈现随高度升高向北倾斜的特征。在水汽热力场上,高原横切变线是水汽汇聚带;高原横切变线附近南侧的600—500 hPa存在高假相当位温中心,具有非常明显的高温、高湿特征。高原横切变线从初始产生到发展强盛再减弱的演变过程中,其生命期近4 d,伴随西太副高西移过程,随着高原横切变线附近正涡度带范围增大、强度增强,高原横切变线发展,干冷空气的侵入导致高原横切变线强度减弱甚至消亡。   相似文献   
39.
大气非绝热加热作用的研究进展与展望   总被引:2,自引:0,他引:2  
姚秀萍  闫丽朱  张硕 《气象》2019,45(1):1-16
大气非绝热加热与天气系统的发生发展有密切联系,与降水等天气过程密不可分,非绝热加热在大气运动中有着至关重要的作用。对非绝热加热的研究和理解,有助于改进数值预报模式,增强数值天气预报模式的预报能力。本文系统梳理了大气非绝热加热的基本内容,近几十年非绝热加热及其作用的研究成果,主要包括非绝热加热的概念及其表征、非绝热加热的时空分布特征、非绝热加热与季风、天气系统(如西太平洋副热带高压、热带气旋、温带气旋和急流)和降水之间的关系,以及非绝热加热在数值模式中的表征,进而指出有待于进一步研究的方面。  相似文献   
40.
不同强度台风相伴随的内陆台前飑线对比分析   总被引:6,自引:6,他引:0  
唐明晖  姚秀萍  王强  丁小剑 《气象》2017,43(8):912-923
本文应用多种常规观测资料和非常规观测资料,以两个强度差异较大的台风(201409号台风威马逊和200606号台风派比安)在内陆造成的台前飑线为研究对象,从飑线产生的实况、大尺度环流背景及飑线不同阶段进行分析,重点以飑线初生阶段的环境条件和成熟阶段的地面中尺度特征、垂直结构进行对比分析。分析结果表明:(1)"威马逊"飑线主要是台风倒槽和副热带高压(以下简称"副高")的相互作用引起的;而"派比安"飑线则是由台风倒槽、副高、西风槽相互作用引起的;两次过程副高位置的不同造成台风外围东南急流位置的差异,"派比安"飑线过程中东南急流更有利于飑线的持续。(2)飑线初生阶段,充沛的水汽来源、明显的条件不稳定、不稳定能量的积累、对流抑制能量的减小均为飑线的初生提供了有利的条件,地面辐合线使得离散的对流单体组织发展成飑线;而水汽条件、地面辐合线位置的差异导致了两次飑线初生位置的不同;对流有效位能(CAPE)、对流抑制位能(CIN)差异预示着"派比安"飑线过程对流发展潜势强于"威马逊"飑线过程。(3)飑线成熟阶段:由地面温压场特征分析出"派比安"飑线冷池中心比"威马逊"飑线更明显;垂直动力结构更有利于强对流的产生和发展。(4)西风槽底部和台风倒槽顶部在湘北的结合,使得已衰减的"派比安"飑线再次增强发展形成Ⅱ阶段飑线。(5)和以往研究的西风带飑线相比,这两次飑线过程并没有分析出那么强的"雷暴高压"、正变压,但有冷池、明显的温度梯度、气压梯度,低层的垂直风切变主要是由风的方向变化所导致。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号