首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   731篇
  免费   144篇
  国内免费   205篇
测绘学   21篇
大气科学   11篇
地球物理   618篇
地质学   295篇
海洋学   106篇
天文学   3篇
综合类   22篇
自然地理   4篇
  2024年   5篇
  2023年   28篇
  2022年   31篇
  2021年   39篇
  2020年   34篇
  2019年   41篇
  2018年   28篇
  2017年   26篇
  2016年   24篇
  2015年   29篇
  2014年   37篇
  2013年   42篇
  2012年   47篇
  2011年   33篇
  2010年   43篇
  2009年   50篇
  2008年   46篇
  2007年   49篇
  2006年   38篇
  2005年   38篇
  2004年   42篇
  2003年   53篇
  2002年   50篇
  2001年   37篇
  2000年   23篇
  1999年   24篇
  1998年   23篇
  1997年   13篇
  1996年   25篇
  1995年   12篇
  1994年   15篇
  1993年   10篇
  1992年   10篇
  1991年   8篇
  1990年   3篇
  1989年   3篇
  1988年   2篇
  1986年   4篇
  1985年   4篇
  1983年   2篇
  1980年   4篇
  1979年   1篇
  1978年   1篇
  1965年   1篇
  1961年   1篇
  1956年   1篇
排序方式: 共有1080条查询结果,搜索用时 500 毫秒
31.
小应变硬化模型(HSS)可以同时考虑土体剪切硬化和压缩硬化,以及土体剪切模量在微小应变范围内随应变衰减的行为,因此在深基坑开挖数值分析中具有很好的适用性。为研究厦门地区土层HSS模型刚度参数E50ref,G0ref和γ0.7对深基坑数值分析结果的敏感性,基于敏感性分析和正交试验原理,选择厦门地区典型土层残积砂质黏性土、粉质黏土和淤泥质土,以坑外地表沉降值及围护墙的最大弯矩值作为控制指标,分别进行了单一控制土层的参数敏感性研究。结果表明:要在深基坑数值分析中精确计算地表沉降和围护墙弯矩,最重要是控制好土层G0ref的取值,其次是E50ref,而γ0.7的影响相对小一些;随开挖深度加深,G0ref对地表沉降的影响逐渐降低,E50ref和γ0.7的影响有所提高;E50ref对围护墙弯矩的影响随开挖进行有所降低,G0ref和γ0.7的影响则有增大趋势,其中G0ref相对较明显。土体小应变行为对于基坑施工效应有重要影响,在相关设计和施工中应予以重视。分析结果可为深基坑有限元分析中获得更合理的地层变形和结构内力响应提供有益参考。  相似文献   
32.
《岩土力学》2016,(1):119-125
在管桩沉桩过程中产生的闭塞效应以及桩芯土的存在,使得管桩的力学特性与实心桩存在着差异,因此需要考察桩周土和桩芯土力学性质的差异对管桩振动的影响。将桩周土、桩芯土和管桩视为一个整体,利用轴对称模型和桩-土接触面的连续性条件得到了管桩的竖向振动解,为了比较,也给出了管桩竖向振动的欧拉模型解。借助数值算例,对比分析了管桩竖向振动采用轴对称模型和欧拉模型得到的桩顶复刚度,并分析了桩周土、桩芯土和桩体本身物理参数对管桩竖向振动的影响。研究结果表明,轴对称模型得到的桩顶复刚度较欧拉模型的结果小,两种模型得到的结果存在一定的差异;桩周土剪切模量比桩芯土剪切模量大时,桩基动刚度和动阻尼则较小;桩顶的复刚度随管桩壁厚的减小而减小,因此,管桩管壁不宜过薄。在进行管桩设计时,需要考虑土体性质对桩基振动特性的影响,合理选择管桩内、外半径和桩长。  相似文献   
33.
金瑞佳  滕斌  吕林 《海洋工程》2016,34(5):11-19
在深海中系泊的海洋平台,如Spar平台,水下部分为带有系泊的圆柱结构,其水平方向运动响应往往具有较低的自振频率,容易在低频波浪力(源于非线性的差频效应)作用下发生共振响应,使结构发生大幅水平慢漂。当浮体的瞬时位置大幅偏离初始位置时,基于初始平衡位置的摄动展开法会存在较大误差。针对这一问题,采用两次展开方法,对大幅慢漂运动开展时域模拟研究。对双色波作用下自由漂浮圆柱的大幅运动响应问题进行数值分析,并与采用基于初始平衡位置的摄动展开法的计算结果进行了对比。结果表明,采用新的两次展开法可以计算出波浪遭遇频率的变化和波浪漂移阻尼,而这无法从基于初始平衡位置的常规摄动展开法中得到,体现了两次展开法在分析大幅慢漂问题上的优势。  相似文献   
34.
以不同刚度硅胶圆杆群为概化植物模型,测定其抗弯弹性模量,通过波浪水槽实验,研究规则波在不同刚度植物杆群内的流速分布、紊动特征及不同刚度杆群的消浪效果。实验结果表明,当波浪通过柔性杆群时,受其摆动的影响,流速周期变化从单峰型逐渐转变成双峰型,杆群刚度越小形成的二次波峰越明显;不同刚度杆群内水体紊动强度变化显示,杆群刚度越大,造成杆群内水体的紊动强度越大;随着杆群抗弯弹性模量的增大,其消浪系数也增大,消浪系数的增长与材料的抗弯弹性模量值非线性关系,而是在某一弹性模量范围内,对消浪系数的影响较为敏感。  相似文献   
35.
大应变静力触探数值模拟及锥形因子影响因素分析   总被引:1,自引:1,他引:0       下载免费PDF全文
以模拟圆锥在不排水黏土中的静力贯入和分析其影响因素为目标,假设土体为均质弹性—完全塑性材料且服从Mises屈服准则,采用任意拉格朗日—欧拉(ALE)网格划分技术确保锥尖土体在大应变条件下的网格质量,进行大应变有限元数值模拟,并分析了稳定状态下土体刚度指数、原位应力状态和锥尖粗糙程度对塑性区半径与锥形因子的影响,获得了锥形因子表达式。模拟结果表明:塑性区随着刚度指数的增大而增大,锥尖周围塑性区的径向扩张处于柱形孔扩张和球形孔扩张之间,更接近于球形孔扩张;锥形因子随土体刚度指数、锥尖粗糙程度的增大而增大,随土体原位应力状态参数的增大而减小;得到的锥形因子表达式可以量化土体刚度指数、原位应力状态和锥尖粗糙程度的影响,具有较高的精确度。  相似文献   
36.
为研究深基坑施工对邻近管线影响程度,判断其安全度,并提出保护措施,以厦门地铁1号线某车站深基坑为依托,考虑土体小应变、地层不均匀分布及土-管线刚度差异等特性,建立三维有限元模型,并以管线沉降的实测值与计算值进行对比,验证计算方法的合理性,在此基础上,分别研究不同材质、直径的管线在基坑开挖过程的变形及内力,对不安全的管线提出不同保护方案,通过数值模拟选择最优保护方案。研究表明:管线的变形和轴力变化受基坑施工三维时空效应的影响显著,最大变形部位与地形最大变形区域一致;以管线允许转角、最大拉力的安全控制标准值为依据,判断DN1000的混凝土给水管处于不安全状态,最后采用的保护方案为:全长管线四周进行2 m×2 m的注浆加固,同时在主要沉降段的管线两侧打入各两排预制管桩。  相似文献   
37.
岩体工程计算分析中结构面刚度系数是至关重要的力学参数,计算分析的精度和可靠程度与这个参数密不可分,结构面刚度系数取值仍然是一个难点。岩体中应力波传播至结构面处将会发生反射和透射现象,利用应力波透射系数可反演结构面动态刚度系数。本文从细观力学角度运用颗粒离散元方法,开发分段线性接触模型及应力波吸收边界模型,开展宏观岩体中应力波传播的模拟,结合准静态压缩试验模拟,研究了较为平直的岩体结构面分别在不同正应力条件下的动、静态刚度系数的变化特征。模拟结果表明:(1)利用C++语言开发的分段线性接触模型很好地实现了结构面非线性变形特征的模拟;(2)基于颗粒离散元方法能够准确地反映岩体中应力波传播规律,应力波通过不同刚度结构面的透射系数与理论解一致;(3)在离散颗粒模型中加入黏滞吸收边界条件很好地实现了在有限尺寸模型中远场应力波传播模拟;(4)在岩体模型中结构面接触部位运用分段线性接触模型,通过模拟应力波传播与单轴压缩试验分别获得了一致性较好的结构面动、静态刚度系数,结构面动/静态刚度系数之比值约为1.0。本文对岩体中结构面刚度的测试和取值具有重要的指导意义。  相似文献   
38.
涡流地震检波器的特性及测试方法的研究   总被引:3,自引:0,他引:3  
本文介绍了涡流地震检波器的工作原理、结构及其频率响应特性--涡流检波器的输出特性在固有频率之上是按外界激励频率的平方递增。高频灵敏度随着激励频率的增加而增高有助于弥补高频信号通过地层传播时的急剧衰减,从而提高了地震勘探的分辨率。在固有频率之下,则加强了低频滤波作用。 本文还以对单自由度线性振动系统的动态分析为基础,研究了利用实验幅频特性曲线来求该系统的固有频率和阻尼系数的方法,推导出必要的计算公式。最后举出一个应用实例,并检验了这种方法的可信度。  相似文献   
39.
40.
针对走滑断层诱发的水库地震,建立了尖点突变模型,提出了发震的充要力学条件判据及地震释放能量的简单表达式。以突变理论分析为依据,建立了水库诱震机制的新假说,简称为断层带弱化与岩体软化效应诱震理论,较合理地解释了水库地震与岩性、构造、水位的关系及水库地震序列b值的特征。本文的讨论从整体上深化了对水库诱震机制的认识。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号