首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1938篇
  免费   327篇
  国内免费   404篇
测绘学   201篇
大气科学   278篇
地球物理   250篇
地质学   1112篇
海洋学   183篇
天文学   97篇
综合类   275篇
自然地理   273篇
  2024年   20篇
  2023年   73篇
  2022年   60篇
  2021年   67篇
  2020年   84篇
  2019年   75篇
  2018年   95篇
  2017年   58篇
  2016年   56篇
  2015年   61篇
  2014年   116篇
  2013年   79篇
  2012年   80篇
  2011年   74篇
  2010年   101篇
  2009年   106篇
  2008年   85篇
  2007年   95篇
  2006年   85篇
  2005年   94篇
  2004年   83篇
  2003年   71篇
  2002年   67篇
  2001年   86篇
  2000年   85篇
  1999年   68篇
  1998年   84篇
  1997年   82篇
  1996年   56篇
  1995年   47篇
  1994年   46篇
  1993年   44篇
  1992年   46篇
  1991年   35篇
  1990年   42篇
  1989年   24篇
  1988年   15篇
  1987年   14篇
  1986年   17篇
  1985年   8篇
  1984年   9篇
  1983年   16篇
  1982年   7篇
  1981年   5篇
  1963年   3篇
  1958年   5篇
  1957年   4篇
  1956年   3篇
  1955年   8篇
  1954年   4篇
排序方式: 共有2669条查询结果,搜索用时 171 毫秒
41.
陈述彭 《遥感学报》2005,9(2):113-116
概略回顾了中国20世纪遥感地质的辉煌成就,列举4项重大突破:极块构造的论证与线性形迹分析,数字地质与找矿、第四纪地质与地貌学的新发现、工程地质选线与选址。指出21世纪面对国土普查的新任务,需要加强遥感信息机理研究,信息融合与共享,学科交叉,社会经济统计空间分析的能力,关注探月计划与遥感制图。  相似文献   
42.
介绍了卫星气象数据业务系统中上行气象信息的具体数据流程及有关上行传输设置.  相似文献   
43.
根据安阳电厂灰坝岩土工程性质及其动力学特性,建立了适合灰坝工程的动力分析模型并采用有限元法进行了动力分析.在此基础上,在不同工况条件下对灰坝进行了抗液化安全评价及抗震稳定性分析.研究表明,在不设碎石桩、无排渗体条件下,粉煤灰子坝的抗液化安全系数Ks<1.25,将发生液化;在设碎石桩、有排渗体条件下,粉煤灰子坝的抗液化安全系数明显提高,Ks≥1.25,不会发生液化.抗震稳定性分析表明,在上述两种工况条件下灰坝是稳定的.  相似文献   
44.
油气成藏机理研究进展和前沿研究领域   总被引:23,自引:7,他引:23  
随着地质工作者刻划和认识地下地质体构成、结构的能力及研究和预测沉积盆地能量场(温度场、压力场和应力场)及其演化能力的不断提高,以流体流动和油气运移为核心的油气成藏机理研究取得了重要进展:(1)证实了油气的优势通道运移并妆步提示了优势运移通道的微观和宏观控制机制,从而使基于油气运移路径三维预测的油气藏定位预测成为可能;(2)证实了幕式快速成藏过程并初步揭示了幕式成藏的驱动机制、有利场所和地球化学识别标志,突破了油气成藏是一个缓慢渗流过程的传统模式;(3)深盆气勘探和成藏机理研究取得了进展,从而突破了背斜成藏的传统观念,使“向斜”(盆地凹陷区)成为一些盆地寻找大型天然气藏的重要场所。沉积盆地深层油气成藏过程和保存条件、活动构造背景下油气晚期快速成藏过程是油气成藏机理研究的重要前沿研究领域。  相似文献   
45.
湘中锡矿山锑矿床成矿物质来源的同位素示踪   总被引:14,自引:0,他引:14  
本文利用放射成因同位素(Pb、Sr)和轻稳定同位素(C、O)对锡矿山超大型锑矿床的成矿物质来源进行了示踪,从物源角度揭示了其在规模成矿、元素发生超常富集的原因。研究表明,锡矿山锑矿床的成矿物质不可能是来自赋矿围岩;深部地幔和基底都卷入了该矿的成矿作用;富Sb的交代型地幔和富Sb的元古界基底为其大规模成矿提供了充足的矿源,两者是形成锡成山超大型锑矿床的前提条件。  相似文献   
46.
地质图空间数据库建设中的拓扑关系处理   总被引:2,自引:0,他引:2  
拓扑关系是空间数据库的核心。主要阐述拓扑关系的基本概念,详细介绍MAPGIS和ARC/INFO两大模块中,拓扑关系具体表现形式、处理方法及处理过程中的注意事项,形成了一套较为完善的工作流程,提高了工作效率,为今后的信息化提供了行之有效的工作方法。  相似文献   
47.
1996年包头6.4级地震的地壳应变特征   总被引:5,自引:0,他引:5  
根据GPS观测资料求出的水平地应变和由跨断层垂直形变计算出的速率强度累积率,研究了包头-大同地区1992~1995年、1995~1996年和1996~1999年的各时期的应变特征,并对包头6.4级(1996年5月3)地震前后的地应变进行对比,认为以压应变为主导的高值区可能是未来强震孕育的地区.面应变、主压应变、剪应变和趋势累积率同时较高的地区,强震危险性较大.一般低应变区和张应变为主导的地区,孕育强震的可能性小,属于比较稳定的地区.1992~1999年包头-大同地区的GPS水平应变的演变,反映了1996~1998年地震幕的孕育发展及结束的全过程.以压应变为主的高应变区和应变梯度带可作为未来强震危险区的判定标志之一.   相似文献   
48.
现今中国大陆地壳运动与活动块体模型   总被引:68,自引:2,他引:68  
通过分析中国地壳运动观测网络GPS数据特别是1999年与2001年区域网数据, 我们初步得到了中国大陆地壳运动速度场, 并用统计分析的方法从高密度台站速度场中区分出9个独立活动块体和2个广泛形变带, 求出活动块体刚体运动欧拉极和相邻块体间相互运动速率. 结果显示中国大陆形变场似可分为3类区域 第1类区包括青藏高原内部区域和天山造山带, 形变在全区域内广泛分布; 第3类区包括塔里木盆地及南北带以东地区, 形变场表现为活动块体, 内部稳定, 形变局限在狭窄的边界带内; 第2类区则处在青藏高原的边缘带, 如柴达木、祁连、西宁、川滇菱形南块体等, 这类区形变场特征处在第1, 3类区之间, 虽然还能保持一定的块体完整性, 但块体的尺度和强度已不如第3类地区. 通过分析各类区域岩石圈结构以及形变模式我们可以得出初步推断 中国大陆地壳形变模式主要由地壳结构所控制. 中国大陆东部和塔里木盆地地区地壳介质有相当强度, 形变表现为刚性块体的相互运动. 而印度板块的北向挤压造成青藏高原和天山的隆起并产生巨厚地壳, 壳内温度上升, 下地壳低速高导层发育, 介质呈较强黏塑性, 地壳脆性层在下地壳塑性流变场作用下产生各种类型的、多层次的形变, 且分布广泛而不局限于少量块体边界地区. 青藏高原边缘的第2类地区地壳结构为第1, 3类地区之间的过渡区, 其形变特征也介于第1, 3类地区之间, 为强度较低的较小活动块体在边界作用力下的运动与变形.  相似文献   
49.
中国大陆活动地块的运动与应变状态   总被引:49,自引:0,他引:49  
从地壳运动与应变的角度给出了活动地块的定义,根据中国大陆及周边地区最近几年GPS观测得到的由1598个GPS站速度组成的统一速度场,估计了各个活动地块的运动与应变参数,分析了各个活动地块的运动与应变状态。中国大陆各地块存在一致的向东运动分量,但其南北分量是不一致的。西部地块存在一致的向北运动分量,东部地块存在一致的向南运动分量。在90°E以东,从喜马拉雅地块向NE方向,各地块的运动方向按顺时针方向旋转,各地块的运动速率是不相同的。从总体上看是西部大、东部小,南部大、北部小,西部大约是东部的3~4倍。各地块主压应变方向的空间分布是不相同的。在90°E以西各地块的主应变方向基本上为SN向,在青藏高原的东北部各地块的主压应变方向基本为NE向,在青藏高原东南部各地块的主压应变方向绕喜马拉雅构造东端顺时针方向旋转。各地块的主应变与剪应变率也是不同的,其中喜马拉雅、天山地块的主压和最大剪应变率最高,其次是拉萨、羌塘、滇西南、祁连与川滇地块。东部各地块的应变率较小。根据应变状态推测,喜马拉雅地块南北向的缩短速率为(15.2±1.5)mm/a,仍然是现今构造活动最强烈的地区,其次是天山地块,天山地块南北向的缩短速率为(10.1±0.9)mm/a。这两个地块目前仍处于隆升状态,从面应变看,面膨胀在中国大陆占优势,东部基本都是膨胀区,在西部面压缩与面膨胀从南向北相间分布。中国大陆的大多数东西向或近东西向断裂两侧的相对运动都是左旋或类似左旋走滑型的,大多数南北向断裂两侧的相对运动都是右旋或类似右旋走滑型的。GPS测定的阿尔金断裂中部的左旋走滑速为(4.8±1.3)mm/a,鲜水河断裂的左旋走滑速为(9.8±2.2)mm/a。地块边界断裂带的运动为地块运动创造了条件,地块及其边界的运动是协调一致的统一的,各个地块的活动程度是不相同的,统计检验结果表明,大多数地块之间的相对运动是显著的与非常显著的,这证明活动地块是客观存在的,喜马拉雅、拉萨、天山、羌塘和滇西南是活动最强烈的地块,中蒙、中朝西、阿拉善和华南是较稳定的地块,印度、太平洋、菲律宾板块与欧亚板块的互相作用力是中国大陆地块运动的主要驱动力。青藏高原地壳物质在印度板块NNE向的强烈推挤下,向NNE和NE方向运动,由于受到北部、东北部和东部地块的阻挡,经高原的东南部向印度洋方向运移,  相似文献   
50.
Movement and strain conditions of active blocks in the Chinese mainland   总被引:2,自引:0,他引:2  
The definition of active block is given from the angles of crustal deformation and strain. The movement and strain parameters of active blocks are estimated according to the unified velocity field composed of the velocities at 1598 GPS stations obtained from GPS measurements carried out in the past years in the Chinese mainland and the surrounding areas. The movement and strain conditions of the blocks are analyzed. The active blocks in the Chinese mainland have a consistent E-trending movement component, but its N and S components are not consistent. The blocks in the western part have a consistent N-trending movement and the blocks in the eastern part have a consistent S-trending movement. In the area to the east of 90°E, that is the area from Himalayas block towards NE, the movement direction of the blocks rotates clockwisely and the movement rates of the blocks are different. Generally, the movement rate is large in the west and south and small in the east and north with a difference of 3 to 4 times between the rates in the west and east. The distributions of principal compressive strain directions of the blocks are also different. The principal strain of the blocks located to the west of 90oE is basically in the SN direction, the principal compressive strain of the blocks in the northeastern part of Qingzang plateau is roughly in the NE direction and the direction of principal compressive strain of the blocks in the southeastern part of Qingzang plateau rounds clockwisely the east end of Himalayas structure. In addition, the principal strain and shear strain rates of the blocks are also different. The Himalayas and Tianshan blocks have the largest principal compressive strain and the maximum shear strain rate. Then, Lhasa, Qiangtang, Southwest Yunnan (SW Yunnan), Qilian and Sichuan-Yunan (Chuan-Dian) blocks followed. The strain rate of the blocks in the eastern part is smaller. The estimation based on the stain condition indicates that Himalayas block is still the area with the most intensive tectonic activity and it shortens in the NS direction at the rate of 15.2±1.5 mm/a. Tianshan block ranks the second and it shortens in the NS direction at the rate of 10.1±0.9 mm/a. At present, the two blocks are still uprising. It can be seen from superficial strain that the Chinese mainland is predominated by superficial expansion. Almost the total area in the eastern part of the Chinese mainland is expanded, while in the western part, the superficial compression and expansion are alternatively distributed from the south to the north. In the Chinese mainland, most EW-trending or proximate EW-trending faults have the left-lateral or left-lateral strike-slip relative movements along both sides, and most NS-trending faults have the right-lateral or right-lateral strike-slip relative movements along both sides. According to the data from GPS measurements the left-lateral strike-slip rate is 4.8±1.3 mm/a in the central part of Altun fault and 9.8±2.2 mm/a on Xianshuihe fault. The movement of the fault along the block boundary has provided the condition for block movement, so the movements of the block and its boundary are consistent, but the movement levels of the blocks are different. The statistic results indicate that the relative movement between most blocks is quite significant, which proves that active blocks exist. Himalayas, Tianshan, Qiangtang and SW Yunnan blocks have the most intensive movement; China-Mongolia, China-Korea (China-Korea), Alxa and South China blocks are rather stable. The mutual action of India, Pacific and Philippine Sea plates versus Eurasia plate is the principal driving force to the block movement in the Chinese mainland. Under the NNE-trending intensive press from India plate, the crustal matter of Qingzang plateau moves to the NNE and NE directions, then is hindered by the blocks located in the northern, northeastern and eastern parts. The crustal matter moves towards the Indian Ocean by the southeastern part of the plateau.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号