首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2206篇
  免费   430篇
  国内免费   929篇
测绘学   40篇
大气科学   7篇
地球物理   90篇
地质学   2915篇
海洋学   252篇
天文学   9篇
综合类   183篇
自然地理   69篇
  2024年   16篇
  2023年   61篇
  2022年   71篇
  2021年   76篇
  2020年   61篇
  2019年   71篇
  2018年   75篇
  2017年   72篇
  2016年   82篇
  2015年   101篇
  2014年   177篇
  2013年   139篇
  2012年   190篇
  2011年   169篇
  2010年   136篇
  2009年   133篇
  2008年   137篇
  2007年   121篇
  2006年   124篇
  2005年   106篇
  2004年   78篇
  2003年   69篇
  2002年   101篇
  2001年   90篇
  2000年   69篇
  1999年   76篇
  1998年   70篇
  1997年   80篇
  1996年   92篇
  1995年   88篇
  1994年   104篇
  1993年   80篇
  1992年   84篇
  1991年   102篇
  1990年   99篇
  1989年   77篇
  1988年   24篇
  1987年   24篇
  1986年   6篇
  1985年   6篇
  1984年   2篇
  1983年   3篇
  1982年   2篇
  1981年   4篇
  1979年   2篇
  1976年   4篇
  1974年   3篇
  1959年   1篇
  1958年   1篇
  1941年   2篇
排序方式: 共有3565条查询结果,搜索用时 15 毫秒
51.
宋雪龙  段士刚  蒋宗胜 《地质学报》2023,97(7):2241-2260
塔尔塔格铁矿是新疆西天山阿吾拉勒海相火山岩型铁成矿带内的一处中型铁矿床,其铁矿体呈透镜状产于粗安玢岩内顶部,在揭示海相火山岩中铁矿床与侵入岩关系方面具有重要意义。该铁矿床发育典型的磁铁矿 磷灰石组合,基本不含硫化物,矿石以似斑状、浸染状、球粒状和晶洞等构造类型为特色,磁铁矿内发育由条带状或叶片状钛铁矿和钛氧化物构成的出溶结构,并有少量的榍石、钍石、萤石等副矿物与之共生,矿床地质特征表明该矿床为典型的与富碱、中性侵入岩有关的IOA(iron oxide apatite)型铁矿床。该矿床围岩英安岩、赋矿粗安玢岩与成矿后正长花岗岩的锆石SHRIMP U Pb同位素加权平均年龄分别为311. 3±1. 4 Ma、304. 7±2. 9 Ma和301. 1±2. 8 Ma,铁矿石样品中与磁铁矿共生的榍石的LA ICP MS U Pb同位素加权平均年龄为302. 3±4. 0 Ma和303. 7±4. 2 Ma,成岩成矿年龄高度吻合,进一步确定其在晚石炭世晚期成矿。本文根据地质特征认为该矿床矿石是由粗安玢岩顶部富铁挥发分聚集而形成的,并初步提出“超浅成侵入岩顶部富挥发分囊体”成矿模型,即富碱、中性岩体超浅成侵位导致挥发分在岩体顶部迅速聚集形成多处富铁和挥发分的囊体,岩体冷凝固结的同时磁铁矿快速结晶成矿。塔尔塔格“IOA型”型铁矿的成因厘定,不仅表明海相火山岩型铁矿与IOA型铁矿可能存在成因联系,还暗示了海相火山岩型铁成矿带内具有寻找IOA型铁矿的潜力。  相似文献   
52.
纳米铁还原脱氮动力学及其影响因素   总被引:3,自引:1,他引:2  
饮用水中硝酸盐(NO3-)对人体健康有危害。为了去除水溶液中NO3-,在实验室制得纳米铁颗粒。它的粒径为20~40 nm,比表面积(BET)为49.16 m2/g。本研究通过批实验考察了纳米铁对NO3-还原脱氮动力学性质和影响NO3-脱氮快慢的主要因素,如反应pH、纳米铁投加量和NO3-起始浓度。实验结果表明,pH越低越有利于NO 3-还原。在一定范围内,NO 3-还原速率随纳米铁投加量增加而增大,而随NO 3-起始浓度升高而降低,反应遵循准一级反应动力学方程,表面吸附和氧化还原反应是纳米铁对NO3-脱氮的主要去除机理。纳米铁对NO3-还原过程中可能反应的途径进行了讨论,NO3-还原产物取决于反应条件。在本研究条件下,纳米铁对NO3-脱氮的最终产物主要为NH4+-N而不是N2,必须进行更多的研究来解决这一问题。  相似文献   
53.
王瑞敏 《岩矿测试》2011,30(3):295-298
样品采用王水溶解,二氯化锡还原,泡沫塑料富集,用Re作内标,电感耦合等离子体质谱法同时测定土壤中超痕量金、铂、钯。在盐酸-二氯化锡体系中,盐酸酸度为15%,二氯化锡浓度为45 g/L,吸附时间30 min时吸附效果明显,吸附温度为25℃时吸附率相对稳定。方法检出限Au为0.21 ng/g,Pt为0.18 ng/g,Pd为0.16ng/g,方法加标回收率Au为91.3%~97.8%,Pt为92.0%~96.7%,Pd为96.0%~101.6%。该方法用于测定国家一级标准物质,线性范围宽、重现性好,结果准确可靠,样品处理简便、快速。  相似文献   
54.
赣南崇义淘锡坑钨矿床氢、氧、硫同位素地球化学研究   总被引:11,自引:2,他引:9  
赣南崇义县淘锡坑钨矿位于南岭东西向构造带东段与武夷山NE-NNE向构造带南段的复合部位,属于以石英脉型黑钨矿为主的钨多金属矿床.文章通过氧、氧、硫同位素地球化学特征的研究,探讨了淘锡坑钨矿成矿流体的来源及演化.研究结果显示:δD值介于-77‰~-45‰之间;石英矿物的δ18O值介于+7.3‰~+12.2‰之间,计算给出...  相似文献   
55.
新疆东准噶尔老鸦泉富碱花岗岩型锡矿床地质及成矿流体   总被引:3,自引:2,他引:1  
老鸦泉碱性花岗岩位于新疆北部东准噶尔地区。老鸦泉碱性花岗岩体及其内卡姆斯特、干梁子锡矿床的矿石和岩石的岩矿鉴定、稀土元素以及流体包裹体的系统研究表明,老鸦泉碱性花岗岩及其内的花岗斑岩及含矿石英岩、云英岩化锡矿体、石英脉锡矿体,实际上是富碱花岗质岩浆逐渐分异演化的同源和最终产物,锡成矿流体为中-高温、低盐度。碱性岩浆晚期分异的大量气水热液富锡、富硅、富碱、富含F、Cl、SO24离子及离子团,其氧逸度高、酸度高、温度高,这种热液引起花岗岩体的硅化、云英岩化等自变质作用,在该作用中随温度、压力的降低及CH4等还原性气体及CO2气体的逃逸,改变了成矿流体的氧化-还原环境,流体向相对还原及碱性条件转化,在新的氧化还原、酸碱度界面条件下,其携带的锡的络合物不稳定而分解,锡沉淀成矿。  相似文献   
56.
清水泉镁铁-超镁铁质层状侵入体位于南阿尔金山阿帕—茫崖构造带中-北部的清水泉地区,其北部与南阿尔金山超高压变质带紧邻。该岩体包含有3~4个由辉石橄榄岩-角闪辉长岩构成的岩浆旋回,与元古宙变质沉积岩系呈侵入接触关系。对其中的角闪辉长岩进行了LA-ICP-MS锆石U-Pb同位素测年,其206Pb/238U表面年龄为(461±2)Ma~(471±2)Ma,其加权平均值为(467.4±1.4)Ma(n=21,MSWD=2.5),所测锆石具有明显的岩浆振荡环带,Th/U比值为0.32~1.16(平均0.64)。测年结果显示,清水泉镁铁-超镁铁质岩体的形成时代晚于南阿尔金山超高压变质岩的峰期变质时代(504~487 Ma),而老于该地区A型花岗岩的时代(425 Ma左右)。分析认为,伴随着同时代的"双峰式"岩浆侵入作用及广泛的变质热事件,大约465 Ma时的南阿尔金山已经由前期的陆-陆碰撞造山阶段转入到了碰撞后的裂谷伸展作用阶段。  相似文献   
57.
华南燕山早期(170~150Ma)花岗岩具有以下典型的地质特征:(1)具有两种不同的分布格局:一种是在武夷山脉两侧地区呈北东向展布,另一种在华南内陆的南岭山脉地区呈东西向展布(Sewell等,2000;孙涛等,2003)。  相似文献   
58.
北天山地体位于中亚造山带南部,夹于准噶尔地块与中天山地体之间,带内至今发现的岩浆铜镍硫化物矿床有:黄山东、黄山西、香山、土墩、葫芦和图拉尔根,这些矿床沿康古尔断裂分布,构成了黄山-镜儿泉铜镍成矿带,镍总储量达到百万吨(刘德权等,2005;Qin et al.,2003)。目前,关于黄山-镜儿泉铜镍成矿带含矿岩体的岩浆  相似文献   
59.
前寒武纪的条带状铁建造(Banded Iron for-mations,简称BIFs)主要形成于太古宙及早元古代,是世界上规模最大、储量最多的铁矿资源类型,其以富硅质和富铁质的条纹或条带交替出现为特征。辽宁省鞍山-本溪(简称鞍本)地区铁矿即为此类型,该铁矿位于华北地台东北缘胶辽台隆的西北部,区内地层由老至新为太古宙鞍山  相似文献   
60.
四川会理拉拉地区是我国重要的IOCG(铁氧化物铜金矿床)产地(李泽琴等,2002;朱志敏等,2009),产出有落凼铜矿、石龙铜矿、老虎山铜矿、红泥坡铜矿等大中型铜矿。目前已发现的这些铜矿均赋存于古元古河口群上部变质火山-沉积岩系,而下部层位由于出露较差,长期未引起重视,地质找矿进展一直未有突破。近年来,通过野外地质调查工作,我们在河口群下部的白云  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号