首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1572篇
  免费   568篇
  国内免费   718篇
测绘学   158篇
大气科学   2036篇
地球物理   69篇
地质学   180篇
海洋学   177篇
天文学   11篇
综合类   81篇
自然地理   146篇
  2024年   17篇
  2023年   62篇
  2022年   119篇
  2021年   92篇
  2020年   85篇
  2019年   130篇
  2018年   81篇
  2017年   84篇
  2016年   76篇
  2015年   105篇
  2014年   128篇
  2013年   125篇
  2012年   128篇
  2011年   118篇
  2010年   117篇
  2009年   141篇
  2008年   113篇
  2007年   119篇
  2006年   125篇
  2005年   99篇
  2004年   99篇
  2003年   89篇
  2002年   96篇
  2001年   93篇
  2000年   57篇
  1999年   46篇
  1998年   36篇
  1997年   54篇
  1996年   45篇
  1995年   39篇
  1994年   37篇
  1993年   25篇
  1992年   17篇
  1991年   19篇
  1990年   20篇
  1989年   13篇
  1988年   1篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1981年   1篇
  1955年   1篇
  1936年   1篇
  1935年   1篇
排序方式: 共有2858条查询结果,搜索用时 15 毫秒
61.
目前的大气水汽算法只适用于晴空条件,但是全球大部分时间云层覆盖都处于40%~60%之间。因此,只适用于晴空条件下的大气水汽反演算法,是不能满足应用需求的。而微波具有一定的穿透能力这一特点,使得其在全天候大气水汽探测方面具有很大的发展潜力。本文发展了基于微波辐射计AMSR-E的数据反演大气水汽的算法,利用不同波段间地表发射率之间的线性关系,消去辐射计信号中的地表信息,而AMSR-E的23.8GHz对大气水汽比较敏感,因此用其反演大气水汽,反演的结果和MODIS以及实测的数据进行对比,算法优势明显。  相似文献   
62.
本文简要介绍了青藏高原东坡理塘大气综合观测站的情况。利用该站2007~2008年观测资料,分析比较了青藏高原东坡地区高原草甸下垫面情况下近地层气象要素及能量输送的季节变化特征。结果表明:理塘地区近地层气象要素及能量输送的季节变化显著,具有明显的水热同期特点。各个季节近地层气象要素和湍流通量,如风、气温、感热通量、潜热通量等,日变化显著。风速、动量通量、摩擦速度等要素的平均日最大值和最小值分别出现在下午和日出前。比湿的峰值出现在日出前。辐射和热平衡分量的日均最大值与最小值分别出现在正午及日出前。地表热源强度分析表明,理塘白天为热源,在春夏秋三季夜间为弱的热源与冷源交替出现。在雨季,潜热输送在陆气间热量交换过程中占主导作用,感热输送是次要的;干季的结果与雨季相反,感热是首要的。  相似文献   
63.
周艳  王洪斌  梁平 《贵州气象》2011,35(5):10-14
2010年12月11—12日黔东南州出现有气象记录以来最晚的暴雨天气,这次过程出现的时间突破历史记录。由于过程出现在冬季,预报员受限于季节因素,预报中降水量级只考虑到大雨的量级。事实上,此次过程黔东南州有15县(市)95乡镇出现暴雨。在冬季产生如此大范围的强降水,与亚欧中高纬一槽一脊,经向度加大的环流背景和较强的水汽条件密切相关。鉴于此,该文利用区域自动站小时雨量资料、全省历史气象资料、Micaps常规资料,采用Micaps分析平台,对此次罕见冬季暴雨过程的水汽条件进行诊断分析,结果表明:低空急流、低层切变辐合是形成此次冬季暴雨的主要大尺度系统,低空急流带动充沛水汽在暴雨区辐合及低层辐合高层辐散的抽吸效应为暴雨的形成提供了有利条件。  相似文献   
64.
台风“莫兰蒂”引发的福建和浙北暴雨分析   总被引:1,自引:0,他引:1  
采用了NCEP的1°×1°格点资料,通过形势场、物理量场的诊断分析,研究了“莫兰蒂”台风暴雨。结果表明,西太平洋副热带高压和高空槽为暴雨提供了良好的大尺度环流条件。暴雨区的水汽条件是良好的,暴雨中心与水汽通量的辐合中心是一致的。暴雨区对应垂直运动最强区,暴雨的发生发展需要强烈且持续的垂直上升运动。在对流层低层,暴雨区的假相当位温都是随高度减小的,浙北地区存在假相当位温密集陡峭区,有利于该地暴雨的发生发展。湿位涡能很好的指示暴雨落区,福建暴雨主要是由对流不稳定引起,而浙北暴雨受正压和斜压不稳定共同影响。  相似文献   
65.
2013年7月7~11日,四川盆地大部分地区出现了持续性强降雨天气(以下简称四川“7.9”暴雨).此次过程的降水中心稳定少动、降水强度及总量大、持续时间长,累积降水量最高达到了1000ram以上,造成严重灾害.为分析位于孟加拉湾地区的大气河对四川“7.9”暴雨的影响.利用NCEP/NCAR再分析资料,通过研究孟加拉湾大气河水汽对这次暴雨的作用及影响,得到的结果表明:此次持续性暴雨过程中,孟加拉湾大气河受西太平洋副高东撤影响,并在200 hPa和850 hPa高低空急流的共同作用下,不断向四川地区输送水汽.这种水汽输送一直持续到11日才停止,此时降水也趋于结束.在整个暴雨过程中,850 hPa上孟加拉湾大气河输送的水汽由于云贵高原阻挡,而绕开云贵高原在南海地区与西太副高外围的水汽以及南半球的越赤道气流汇合后,在低空急流左侧辐合气流作用下输送到四川盆地,为暴雨产生提供水汽.同时,700 hPa上的水汽直接越过云贵高原到达四川盆地.孟加拉湾大气河的这两种输送方式为四川盆地持续性暴雨提供了充足的水汽供应.  相似文献   
66.
水汽层析代数重构算法   总被引:1,自引:0,他引:1  
讨论了代数重构算法在水汽层析应用中的各种问题,包括约束条件的构造、层析初值的选择、松弛因子的计算、终止条件的确定等,给出了计算最优松弛因子的黄金分割搜索法和确定终止条件的NCP规则,对比分析了Kaczmarz、Randkaczmarz、Symkaczmarz、SART、Landweber、Cimmino、CAV、DROP等8种常见的代数重构算法,并以香港SatRef的观测数据进行了试验。试验结果表明,以上8种代数重构技术都能够满足水汽层析的要求;迭代终止条件比松弛因子更为重要;采用文中计算最优松弛因子的黄金分割搜索法和NCP迭代终止条件,CAV算法结果最优,其次为Cimmino算法。  相似文献   
67.
研究东日本地震、汶川地震和玉树地震震中及其附近区域在地震前后的水汽时间序列变化。首先分析震中MODIS水汽序列和震中附近探空站点水汽序列在地震前后的变化;然后基于GNSS ZTD与水汽之间的高相关性,以GNSS ZTD代替GNSS水汽,讨论震源区周围IGS站点的ZTD序列变化。研究发现,震后震中及其附近区域水汽值变化出现异常,且距离越近所受影响越大;水汽不断聚积,达到峰值后发生降水。  相似文献   
68.
利用巴丹吉林沙漠北缘拐子湖流沙下垫面2013年7、10月和2014年1、4月的湍流通量资料,计算并分析了研究区近地层湍流强度,同时针对风速分量、温度、水汽和CO2归一化标准差随稳定度的变化关系和总体输送系数等陆面过程特征进行分析。结果表明:(1)风速各分量的湍流强度均随风速的增加逐渐减小,风速处于2 m·s-1以下时湍流发展最为旺盛。湍流强度主要由水平方向风速分量决定,垂直方向风速的作用较小,且近中性和不稳定层结利于湍流的发展。与其他地区相比,平坦且没有建筑物的沙漠地区,机械湍流较弱,湍流强度相应较小。(2)风速各分量的归一化标准差与稳定度(z/L)均满足1/3次方函数规律,其中垂直方向风速分量的拟合曲线方程较好。(3)动量输送系数Cd具有明显的夏季高、冬季低的变化状态且各月的日变化形态均呈夜间低、日间高的循环形态。热量输送系数Ch的不同月份日变化间并没有明显的排列次序,且日出日落前后具有明显的波动。不稳定层结时,CdCh均随风速的增加逐渐减小;稳定层结时,CdCh均随着风速的增加逐渐上升。  相似文献   
69.
以武汉地区为例,本文推导无线电探空推导的大气加权平均温度模型并对其可靠性进行检验。采用武汉无线电探空数据推算武汉地区的大气加权平均温度计算模型,以此模型计算GPS可降水量,通过与无线电探空结果比较来检验该模型的精确度。在WHDH站GPS可降水量与无线电探空的比较中,两者差值的均方根为3.0mm,两者的相关性达到了0.952。利用中国地壳运动监测网络2002年武汉站GPS数据和武汉地区大气加权平均温度模型推算的可降水量与无线电探空比较,GPS可降水量与无线电探空可降水量在数值上和发展趋势上比较接近,说明了无线电探空的大气加权平均温度模型的可靠性。  相似文献   
70.
简要介绍GPS遥感水汽的原理,详细讨论了计算地球固体潮改正模型的理论公式。介绍获取JPL星历的方法,以及如何利用JPL行星/月球星历来计算太阳和月亮的坐标,并逐步计算出地球固体潮改正。举例计算了地球固体潮改正,分析了其对水汽的影响,比较了太阳距离、月亮距离与地球固体潮改正的关系。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号