首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11290篇
  免费   2221篇
  国内免费   1966篇
测绘学   2124篇
大气科学   2673篇
地球物理   2894篇
地质学   3841篇
海洋学   1011篇
天文学   136篇
综合类   1134篇
自然地理   1664篇
  2024年   66篇
  2023年   262篇
  2022年   365篇
  2021年   433篇
  2020年   339篇
  2019年   401篇
  2018年   292篇
  2017年   308篇
  2016年   329篇
  2015年   457篇
  2014年   780篇
  2013年   579篇
  2012年   734篇
  2011年   711篇
  2010年   698篇
  2009年   788篇
  2008年   834篇
  2007年   647篇
  2006年   599篇
  2005年   667篇
  2004年   597篇
  2003年   547篇
  2002年   500篇
  2001年   432篇
  2000年   411篇
  1999年   342篇
  1998年   311篇
  1997年   278篇
  1996年   292篇
  1995年   302篇
  1994年   235篇
  1993年   188篇
  1992年   186篇
  1991年   139篇
  1990年   115篇
  1989年   105篇
  1988年   37篇
  1987年   21篇
  1986年   23篇
  1985年   23篇
  1984年   15篇
  1983年   12篇
  1982年   14篇
  1981年   8篇
  1980年   11篇
  1979年   12篇
  1977年   5篇
  1976年   4篇
  1975年   3篇
  1954年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
利用2011年10月至2017年12月黄河源区鄂陵湖野外观测数据,对比分析多雪年与少雪年土壤冻结与消融时间、土壤温湿度、地表能量分量的变化特征。结果表明:多雪年地表反照率偏高,净辐射偏低,地表感热输送偏低,土壤由热“源”转为热“汇”的时间晚于少雪年。积雪可减少土壤吸收辐射能量,减少地表感热通量,在土壤完全冻结期与消融期增大地表潜热通量,在完全冻结期,减少土壤向大气的热输送,在消融期,减少大气向土壤的热输送。积雪在冻结期有降温作用,使得多雪年土壤较早发生冻结,且同一时期土壤温度偏低;在完全冻结期有保温作用,使得土壤温度偏高;在消融期有保温(“凉”)作用,使得消融较晚,且同一时期土壤温度偏低。在整个积雪年内,多雪年浅层土壤湿度高于少雪年,积雪对浅层土壤有保湿作用。积雪使土壤开始冻结时间有所提前,开始消融的时间有所滞后,可延长该年土壤完全冻结持续天数。  相似文献   
72.
利用1979-2016年中国区域长时间序列逐日雪深资料,分析了青藏高原积雪深度与积雪日数的分布及变化特征,并将积雪期划分为三个阶段(积累期、鼎盛期和消融期),结合ERA-Interim月平均再分析资料,分析了积雪与地表热状况(气温、地表和土壤温度)和能量输送量(地表净短波辐射、地表净长波辐射、感热通量、潜热通量、地表热通量和土壤热通量)的相关关系,初步探讨了积雪在高原陆面过程中的作用。结果表明:研究时间范围内青藏高原积雪(深度和日数)主要呈减少趋势,仅在黄河源区及高原边缘地区为增加趋势,积雪鼎盛阶段(1-2月)的减少趋势最显著;高原积雪对地表主要起降温作用,深层土壤温度对积雪的响应存在滞后性,积雪的减少抑制了土壤向上的热量输送进而不利于冻土的发育;高原积雪与地表感热和地表热通量主要呈现负相关关系,潜热通量与积雪也呈负相关特征但比感热通量的相关性小。由于ERA-Interim资料对高原积雪深度的描述与本研究使用的卫星遥感积雪深度存在较大偏差(包括空间分布、气候倾向率、年际变化以及绝对大小等),导致本研究中积雪与地表热状况和热通量的相关度不高,需要通过陆面模式模拟做进一步探讨。  相似文献   
73.
利用内蒙古呼伦贝尔市常规观测资料和GDAS、NCEP/NCAR再分析资料,采用欧拉方法分析了2016年春季内蒙古东北部地区一次极端暴雪过程的水汽输送及收支特征,利用HYSPLIT模式和聚类分析模拟计算了此次暴雪天气过程的水汽源地、主要水汽输送通道及其对水汽输送的贡献,并与传统的欧拉方法结果进行对比。结果表明:(1)有3支不同源地的水汽流在内蒙古东北部地区交汇,对呼伦贝尔地区暴雪的发生与维持有重要影响;(2)经向和纬向输送为此次暴雪天气的发生提供了充足的水汽,暴雪区水汽主要源于中高层的南边界和随西风气流的西边界;(3)利用HYSPLIT模式模拟发现,在此次暴雪天气过程中水汽主要来源于新地岛以西洋面、日本海以及巴尔喀什湖,且三者贡献率大致相当。  相似文献   
74.
利用逐小时风云卫星TBB资料、逐小时中国自动站与CMORPH降水产品融合数据以及国家级地面观测站24小时累积降水量,统计分析2010~2016年夏季,伴随下游地区(104°E以东)降水的青藏高原云团东传过程以及东传过程中镶嵌于云团中的中尺度对流系统(Mesoscale Convective System,简称MCS)特征。结果表明,共出现120次伴随下游降水的高原云团东传过程,6月出现最频繁,但持续时间较长的过程多出现在7月。云团向东传播的主要三条路径是平直东传、沿长江折向东传和复合东传。其中路径二——沿长江折向东传中的过程是高影响过程,因为过程次数较多(46次),过程平均持续时间较长(62小时),在下游地区引发的降水日数和暴雨日数最多。属于东传过程的MCS在7月形成最多,集中分布在青藏高原东坡、云贵高原东部、长江沿岸及其以南地区。高原MCS影响长江中下游地区降水主要是通过向东传播的形式实现,因为即使生命史更长的中α尺度对流系统(Meso-α Convective System,简称MαCS)也鲜少直接移动至110°E以东地区。不同区域的中α尺度持续性拉长形对流系统(Permanent Elongated Convective System,简称PECS)的日变化特征显示,东传过程MCS更容易在夜间从高原东坡向东传播至下游地区。在三条路径中,路径二中的东传过程MCS数量最多、在下游地区发展最旺盛并与降水日数和覆盖范围存在更好的对应关系。  相似文献   
75.
苏州市一次重霾污染天气过程的数值模拟   总被引:1,自引:1,他引:0  
本文对苏州地区2015年12月13—15日发生的一次典型的重霾污染天气过程进行了数值模拟,分析了颗粒物及其组分的时空变化特征及其气象影响因子,以期为该区域空气污染治理和预防提供科学依据。结果表明:(1)利用WRF-Chem模式对此次重霾污染天气过程的污染气体成分进行数值模拟后发现,小时平均的PM_(2.5)、PM_(10)、CO、SO_2、NO_2模拟值与实测值的相关系数较高,达到0.68以上,通过了P0.01的显著性检验,且日变化过程对应也较好。(2)通过分析此次污染过程的天气背景,发现污染形成期高空环流比较平直,中层为均匀的弱高压控制,地面受弱高压脊控制,这种形势容易导致颗粒物的堆积。后期地面等压线密集时,风速大,有利于污染物的输送与扩散。(3)通过分析此次污染过程期间气象要素的变化发现,有逆温、风速小、相对湿度大等不利的气象条件是导致此次污染过程发生的重要原因之一。(4)HYSPLIT轨迹分析显示,此次重霾过程主要受北方大范围灰霾颗粒物南下影响,北方污染气团逐步南推,14至15日本地大气扩散条件差、污染物累积,最终导致本地污染加重,从而发生重霾事件。(5)火点图的分布进一步验证了此次重霾污染过程是由外来污染气团输入所导致。  相似文献   
76.
重要天气过程概述1大雾过程2019年1—3月,江西省区域性大雾(15站以上)共出现31d ,较历史同期显著偏多。全省单日出现40站以上大雾有7d(表1);连续3 d以上出现大雾4次,分别是2月5—7日、24—27日、3月6— 13日、28—31日。  相似文献   
77.
利用全国2287个气象观测站1961—2016年逐日降水资料,基于对暴雨区进行连续追踪的思路,采用暴雨相邻站点数和暴雨区中心距离确定了中国区域性暴雨过程的客观识别方法;根据区域性暴雨过程的平均强度、持续时间和平均范围构建了区域性暴雨过程的综合强度评估模型。利用该客观方法对1961—2016年中国的区域性暴雨过程进行识别,并分析其气候和气候变化特征。结果显示:我国区域性暴雨过程年均38.5次;区域性暴雨过程一年各月均可出现,但主要出现在4—9月,其中7、8月发生最为频繁,6月区域性暴雨过程持续时间长、范围广、综合强度强,这与长江中下游地区梅雨现象有关。一年中,区域性暴雨过程首次出现日期平均为3月6日,末次出现日期平均为11月14日;1961—2016年,我国年区域性暴雨过程首次出现日期呈明显提前、末次日期呈显著推后、暴雨期呈显著延长的变化趋势;年发生总频次呈微弱增多,较强区域性暴雨过程次数呈明显增加趋势;区域性暴雨过程的覆盖范围和综合强度均呈显著增大趋势。南方型区域暴雨过程变化趋势与全国的基本一致;北方型首次日期呈提前、末次日期呈推后趋势,发生频次有微弱减少趋势,覆盖范围、持续时间、综合强度均无明显变化趋势。  相似文献   
78.
采用WRF模式与包含了云凝结核(Cloud Condensation Nuclei,CCN)浓度和霰雹密度预报的NSSL(National Severe Storm Laboratory,国家强风暴实验室)微物理方案,模拟不同CCN初始浓度条件下南京地区的一次冰雹云过程,分析不同CCN初始浓度影响下冰雹云过程的宏微观演变特征,以及对流发展不同阶段的水凝物粒子及流场、温度场的垂直分布特征。研究发现:1)较大的CCN初始浓度虽然抑制了前期对流降水,但对后期对流降水的产生有促进作用;2)CCN初始浓度的增加使得模拟雷达回波的强回波区域(大于40 dBz)缩小,中等强度区域(小于40 dBz)扩张。3)CCN初始浓度增大不利于对流发展初期云雨自动转化过程的发生,但是促进了冰晶与雪的产生,使得冰雹含量峰值出现的时间推迟。4)CCN浓度增大抑制了雨水产生,间接使得霰粒子更倾向于干增长,平均密度更小;5)较大的CCN浓度促使冰雹云单体的发展时间增长。  相似文献   
79.
《中低纬山地气象》2019,(5):F0004-F0004
1、凝冻灾害及防御措施气象上将强冷空气的入侵造成局部地区或大范围地区气温剧烈下降的天气过程,称为寒潮,在受寒潮入侵影响出现降雪、霜冻、冻雨等低温阴雨天气时,常常在电线、树枝、地面上形成坚固的冰层(俗称“凝冻”或“桐油凝”),由于降雪常与雨淞同时发生,所以在贵州通常称为“雪凝”天气。  相似文献   
80.
线性化物理过程对GRAPES 4DVAR同化的影响   总被引:8,自引:3,他引:5       下载免费PDF全文
线性化物理过程能够改善四维变分同化中极小化收敛的稳定性和增加极小化过程中对大气物理过程和动力更加精确的描述,它是四维变分同化中非常重要的一部分。通过在GRAPES全球模式中研究线性化物理过程,尤其是两个湿线性化物理过程,改善切线性模式预报精度,来提高GRAPES全球四维变分同化的分析和预报效果。线性化物理过程的开发首先需要简化原非线性化物理过程中的强非线性项,然后对线性化物理过程进行规约化,以抑制切线性扰动的异常增长。目前GRAEPS全球模式中的线性化物理过程主要包括次网格尺度地形参数化、垂直扩散、积云深对流和大尺度凝结。线性化物理过程预报精度的检验方法是通过选择合适大小的初始扰动(同化分析增量),来比较非线性模式和切线性模式中的扰动演化的纬向平均误差。然后以绝热版本的切线性模式为基础,通过冬、夏两个个例试验来分别检验4个线性化物理过程的12 h预报效果。试验结果表明,通过添加次网格地形参数化和垂直扩散两个干线性化物理过程方案,可以有效抑制住绝热版本切线性模式低层扰动的异常增长,大幅度改善切线性模式预报效果。通过添加积云深对流和大尺度凝结两个湿线性化物理过程,可以在热带区域和中、高纬度地区提高切线性模式中湿变量和温度变量的近似精度,提高GRAPES全球四维变分同化的分析和预报效果。   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号