首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   709篇
  免费   48篇
  国内免费   7篇
测绘学   529篇
大气科学   1篇
地球物理   105篇
地质学   21篇
海洋学   18篇
综合类   45篇
自然地理   45篇
  2024年   1篇
  2023年   1篇
  2022年   20篇
  2021年   52篇
  2020年   58篇
  2019年   30篇
  2018年   35篇
  2017年   71篇
  2016年   87篇
  2015年   85篇
  2014年   57篇
  2013年   85篇
  2012年   41篇
  2011年   55篇
  2010年   25篇
  2009年   31篇
  2008年   14篇
  2007年   7篇
  2006年   4篇
  2005年   2篇
  2003年   2篇
  1979年   1篇
排序方式: 共有764条查询结果,搜索用时 250 毫秒
81.
We presented a multiresolution hierarchical classification (MHC) algorithm for differentiating ground from non-ground LiDAR point cloud based on point residuals from the interpolated raster surface. MHC includes three levels of hierarchy, with the simultaneous increase of cell resolution and residual threshold from the low to the high level of the hierarchy. At each level, the surface is iteratively interpolated towards the ground using thin plate spline (TPS) until no ground points are classified, and the classified ground points are used to update the surface in the next iteration. 15 groups of benchmark dataset, provided by the International Society for Photogrammetry and Remote Sensing (ISPRS) commission, were used to compare the performance of MHC with those of the 17 other publicized filtering methods. Results indicated that MHC with the average total error and average Cohen’s kappa coefficient of 4.11% and 86.27% performs better than all other filtering methods.  相似文献   
82.
分形维数法是分析空间结构分布的一种典型方法,但它对于区分不同的分布形式还存在缺陷。针对这一问题,该文介绍了空隙度指数的定义和树冠空隙度的计算方法;以模拟的树冠点云数据为对象,提出了一种基于三维凸包和三维滑动盒算法的激光雷达(Li DAR)点云数据空隙度分析方法,详尽分析了不同冠型产生的空隙度指数差异;并利用4棵实测的树冠点云数据做检验;最后阐述了空隙度指数在树冠空间异质性分析研究中的作用,并对其应用范围和前景作了展望。结果表明:划分尺度相同时,在一定的尺度范围内,锥型树冠、半球型和半椭球型树冠的差别可以通过空隙度指数曲线有效地区分,实测树冠的结果也体现了空隙度指数对于判断树冠空间结构的有效性。  相似文献   
83.
机载激光扫描可获取植被茂密地区的数字地形模型(DTM),但将其用于茂密植被覆盖区地裂缝提取方法的研究还不多见。以湖南冷水江市浪石滩为试验区,基于机载Li DAR的激光点云数据,研究了植被覆盖区地裂缝的提取方法,分析了地裂缝的微地貌特征。首先对离散的三维激光点云数据依次进行基于不规则三角网滤波、高程滤波及回波信息强度滤波提取地面点,以保留完整的微地貌微特征;然后构建不规则三角网,反距离加权内插生成数字高程模型(DEM),提取地裂缝识别参数,同时基于最小曲率对地裂缝进行线性探测,提取地裂缝的长度信息,且利用地裂缝剖面信息分析其微特征,结合识别参数分析地裂缝的稳定性。研究结果表明:利用机载Li DAR点云数据提取的地裂缝识别参数,能够确定地裂缝的位置、坡度坡向、长度和深度信息,有助于判定地裂缝的稳定性;在植被较为茂密、地面点密度稀疏的区域,保留一定的低矮植被所提取到的DEM能更好地保留地裂缝的微地貌特征。  相似文献   
84.
The development of robust and accurate methods for automatic registration of optical imagery and 3D LiDAR data continues to be a challenge for a variety of applications in photogrammetry, computer vision and remote sensing. This paper proposes a new approach for the registration of optical imagery with LiDAR data based on the theory of Mutual Information (MI), which exploits the statistical dependency between same- and multi-modal datasets to achieve accurate registration. The MI-based similarity measures quantify dependencies between aerial imagery, and both LiDAR intensity data and 3D point cloud data. The needs for specific physical feature correspondences, which are not always attainable in the registration of imagery with 3D point clouds, are avoided. Current methods for registering 2D imagery to 3D point clouds are first reviewed, after which the mutual MI approach is presented. Particular attention is given to adoption of the Normalised Combined Mutual Information (NCMI) approach as a means to produce a similarity measure that exploits the inherently registered LiDAR intensity and point cloud data so as to improve the robustness of registration between optical imagery and LiDAR data. The effectiveness of local versus global similarity measures is also investigated, as are the transformation models involved in the registration process. An experimental program conducted to evaluate MI-based methods for registering aerial imagery to LiDAR data is reported and the results obtained in two areas with differing terrain and land cover, and with aerial imagery of different resolution and LiDAR data with different point density are discussed. These results demonstrate the potential of the MI and especially the CMI methods for registration of imagery and 3D point clouds, and they highlight the feasibility and robustness of the presented MI-based approach to automated registration of multi-sensor, multi-temporal and multi-resolution remote sensing data for a wide range of applications.  相似文献   
85.
The characterisation the vertical profiles and cross-sections of roads is important for the verification of proper construction and road safety assessment. The goal of this paper is the extraction of geometric parameters through the automatic processing of mobile LiDAR system (MLS) point clouds. Massive and complex datasets provided by the MLS are processed using a hierarchical strategy that includes segmentation, principal component analysis (PCA)-based orthogonal regression, filtering and parameter extraction procedures. Best-fit geometric parameters act as a vertical road model for both linear parameters (slope and vertical curves) and cross-sections (superelevations). The proposed automatic processing approach gives satisfactory results for the analysed scenario.  相似文献   
86.
A computational canopy volume (CCV) based on airborne laser scanning (ALS) data is proposed to improve predictions of forest biomass and other related attributes like stem volume and basal area. An approach to derive the CCV based on computational geometry, topological connectivity and numerical optimization was tested with sparse-density, plot-level ALS data acquired from 40 field sample plots of 500–1000 m2 located in a boreal forest in Norway. The CCV had a high correspondence with the biomass attributes considered when derived from optimized filtrations, i.e. ordered sets of simplices belonging to the triangulations based on the point data. Coefficients of determination (R2) between the CCV and total above-ground biomass, canopy biomass, stem volume, and basal area were 0.88–0.89, 0.89, 0.83–0.97, and 0.88–0.92, respectively, depending on the applied filtration. The magnitude of the required filtration was found to increase according to an increasing basal area, which indicated a possibility to predict this magnitude by means of ALS-based height and density metrics. A simple prediction model provided CCVs which had R2 of 0.77–0.90 with the aforementioned forest attributes. The derived CCVs always produced complementary information and were mainly able to improve the predictions of forest biomass relative to models based on the height and density metrics, yet only by 0–1.9 percentage points in terms of relative root mean squared error. Possibilities to improve the CCVs by a further analysis of topological persistence are discussed.  相似文献   
87.
Canada is dominated by forested ecosystems which are subject to various inventory and management practices, with more northern boreal forests subject to neither. Our objectives were to measure the capacity of temporal trajectory metrics for estimating selected forest attributes in a northern Canadian boreal forest context using Landsat imagery and investigate the importance of different types of temporal trajectory metrics. Results indicated that Wetness was the best Tasseled Cap (TC) component for aboveground biomass estimation (R2 = 50%, RMSE% = 56%), and the combination of simple and complex metrics from all TC components produced the highest R2 (62%) and lowest RMSE% (49%). Using a similar combination of variables, other forest attributes were estimated equally reliably with lower RMSE% values. The most important temporal trajectory metrics were simple and described TC component values at each point of change in the temporal trajectory, however the most important variables overall were environmental variables.  相似文献   
88.
机载激光雷达( LiDAR)技术的快速发展为获取高时空分辨率的地球空间信息提供了一种全新的技术手段。笔者在某市电力选线项目中利用机载激光雷达技术,获得高精度点云,根据点云建立三维模型,并通过大量外业采集数据进行精度检核,最后将生成产品导入电力选线软件中,实现了在室内完成电力选线工作。实验表明,在电力选线项目中,利用机载激光雷达技术提高了作业效率,具有广阔的应用前景。  相似文献   
89.
This paper describes a geographic information system(GIS)-based method for observing changes in topography caused by the initiation, transport, and deposition of debris flows using highresolution light detection and ranging(LiDAR) digital elevation models(DEMs) obtained before and after the debris flow events. The paper also describes a method for estimating the volume of debris flows using the differences between the LiDAR DEMs. The relative and absolute positioning accuracies of the LiDAR DEMs were evaluated using a real-time precise global navigation satellite system(GNSS) positioning method. In addition, longitudinal and cross-sectional profiles of the study area were constructed to determine the topographic changes caused by the debris flows. The volume of the debris flows was estimated based on the difference between the LiDAR DEMs. The accuracies of the relative and absolute positioning of the two LiDAR DEMs were determined to be ±10 cm and ±11 cm RMSE, respectively, which demonstrates the efficiency of the method for determining topographic changes at an scale equivalent to that of field investigations. Based on the topographic changes, the volume of the debris flows in the study area was estimated to be 3747 m3, which is comparable with the volume estimated based on the data from field investigations.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号