首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1538篇
  免费   572篇
  国内免费   850篇
测绘学   28篇
大气科学   1417篇
地球物理   164篇
地质学   1041篇
海洋学   152篇
天文学   3篇
综合类   81篇
自然地理   74篇
  2024年   8篇
  2023年   70篇
  2022年   53篇
  2021年   92篇
  2020年   85篇
  2019年   75篇
  2018年   63篇
  2017年   57篇
  2016年   65篇
  2015年   75篇
  2014年   132篇
  2013年   113篇
  2012年   125篇
  2011年   106篇
  2010年   120篇
  2009年   144篇
  2008年   148篇
  2007年   137篇
  2006年   132篇
  2005年   138篇
  2004年   115篇
  2003年   88篇
  2002年   84篇
  2001年   107篇
  2000年   78篇
  1999年   71篇
  1998年   73篇
  1997年   53篇
  1996年   60篇
  1995年   49篇
  1994年   44篇
  1993年   49篇
  1992年   30篇
  1991年   40篇
  1990年   28篇
  1989年   22篇
  1988年   4篇
  1987年   2篇
  1986年   4篇
  1985年   2篇
  1981年   2篇
  1954年   2篇
  1943年   1篇
  1942年   1篇
  1941年   1篇
  1940年   1篇
  1937年   1篇
  1936年   1篇
  1935年   2篇
  1930年   1篇
排序方式: 共有2960条查询结果,搜索用时 15 毫秒
81.
The characteristics of water vapor transport (WVT) over China and its relationship with precipitation anomalies in the Yangtze River Basin (YRB) are analyzed by using the upper-air station data in China and ECMWF reanalysis data in summer from 1981 to 2002. The results indicate that the first mode of the vertically integrated WVT is significant whose spatial distribution presents water vapor convergence or divergence in the YRB. When the Western Pacific Subtropical High (WPSH) is strong and shifts southward and westward, the Indian Monsoon Low Pressure (IMLP) is weak, and the northern part of China stands behind the middle and high latitude trough, a large amount of water vapor from the Bay of Bengal (BOB), the South China Sea (SCS) and the western Pacific forms a strong and steady southwest WVT band and meets the strong cold water vapor from northern China in the YRB, thus it is likely to cause flood in the YRB. When WPSH is weak and shifts northward and eastward, IMLP is strong, and there is nearly straight west wind over the middle and high latitude, it is unfavorable for oceanic vapor extending to China and no steady and strong southwest WVT exists in the region south of the YRB. Meanwhile, the cold air from northern China is weak and can hardly be transported to the YRB. This brings on no obvious water vapor convergence, and then less precipitation in the YRB. Foundation: International Technology Cooperation Project of the Ministry of Science and Technology of China, No. 2007DFB20210; Application Technology Research and Development Project of Sichuan Province, No. 2008NG0009; Basic Research Foundation of Institute of Chengdu Plateau, China Meteorological Administration, No.BROP2000802 Author: Jiang Xingwen (1983–), specialized in the study of climate diagnosis.  相似文献   
82.
赵俊虎  封国林  杨杰  支蓉  王启光 《气象学报》2012,70(5):1021-1031
利用历史数据,研究了西太平洋副热带高压指数的特征,证实脊线指数和西伸脊点指数可以较好地描述西太平洋副热带高压,同时也指出这两个指数的年际和年代际变化及其不同的配置,是造成中国夏季降水时空分布和旱涝异常的复杂性、多变性的主要原因之一。据此,将西太平洋副热带高压西伸脊点指数和脊线指数的距平投影到二维平面上,对西太平洋副热带高压进行了分类,并对其各种类型下中国夏季降水进行了合成分析,发现夏季西太平洋副热带高压西伸脊点和脊线不同配置下中国夏季降水的总体分布具有明显的规律性:在西太平洋副热带高压脊线偏北的情况下,夏季降水总体表现出南北两条雨带;在西太平洋副热带高压脊线正常的情况下,夏季降水总体表现为北多南少,长江以北降水偏多;在西太平洋副热带高压脊线偏南的情况下,夏季降水总体表现为南多北少,长江流域及其以南地区降水偏多;上述3种情况下西伸脊点越偏西,降水范围越大。此外,通过计算1951—2010年各年夏季降水实况与其西太平洋副热带高压所属年份夏季降水合成的距平相关系数,发现同一类型下各年夏季降水与其合成分布总体相似,说明了西太平洋副热带高压位置对中国降水具有明显的影响,同时也说明此种分类具有一定的合理性。最后,通过对9种西太平洋副热带高压类型下北半球夏季500hPa高度场和850hPa风场距平分别进行合成,对不同西太平洋副热带高压类型下中国夏季降水的大尺度环流背景和可能机理进行了分析。  相似文献   
83.
利用NCEP/NCAR提供的月平均850、500 hPa位势高度场和风矢量场资料及NOAA气候诊断中心的海温扩展重建资料,同时利用NCEP的CAM3.0模式对厄尔尼诺气候效应进行了分析.外强迫为赤道东太平洋的异常海温,从9月积分至次年6月,对此进行了模拟,结果表明:(1)冬季厄尔尼诺达到强盛后对次年东亚初夏的环流有明显的影响,表现在低层菲律宾附近反气旋环流的增强和中高纬度OKJ类波列(主要为鄂霍次克海—日本东部—日期变更线以西副热带高压北部的波列)的活跃,而后者更容易被模拟,这两种环流方面的影响都能在资料中检测出来.当这两种异常环流的发展被模拟出来时,长江以南地区的多雨状态也能够被模拟,表明厄尔尼诺发生后,其对夏季风的发生、发展有滞后作用,从而加强向中国南方的水汽输送,但至6月由于OKJ波列的发展使波活动通量在北太平洋中西部产生大面积强烈散射使副热带高压偏南,因而又抑制了夏季风的进一步向北推进,从而只停留在长江及其以南地区,这可能是致使降水南多北少的原因之一;(2)中国南方降水多寡受到鄂霍次克海高压及菲律宾反气旋的共同影响,两者任何一方加强时南方降水增多,反之亦然.近年来受鄂霍次克海高压的影响更为突出,鄂霍次克海高压、南北方降水、厄尔尼诺事件以及菲律宾反气旋都存在相近似但又各自不同的年代际变化规律,其共同影响与中国南涝北旱的年代际降水格局变化有密切关系.  相似文献   
84.
利用1979--2008年NCEP/NCAR逐日再分析资料和向外长波辐射资料讨论了4-5月南亚高压在中南半岛上空建立的年际变化特征及其与亚洲南部夏季风的关系。发现南亚高压建立偏早年其建立过程时间长,中南半岛高空反气旋环流强,建立开始前位于菲律宾群岛以东洋面上空的反气旋环流中心位置较为偏西;偏晚年南亚高压建立过程时间短,中南半岛高空反气旋环流弱,建立开始前西太平洋上空无闭合的反气旋性环流中心。南亚高压建立的早晚与中南半岛地区对流建立发展关系密切,当中南半岛地区对流建立发展较早时,南亚高压建立较早;反之,对流建立发展偏晚时,南亚高压建立偏晚。南亚高压建立早晚年,亚洲南部夏季风的爆发存在明显差异。南亚高压建立偏早年,孟加拉湾东部一中南半岛夏季风和南海夏季风爆发早;建立偏晚年,孟加拉湾东部一中南半岛夏季风和南海夏季风爆发晚,因此南亚高压在中南半岛上空建立的早晚对后期亚洲南部夏季风的爆发具有较好的指示意义。  相似文献   
85.
2011年初夏我国长江中下游降水的气候特征及成因   总被引:6,自引:3,他引:3  
文章主要分析了2011年初夏长江中下游降水的气候特征及其成因。结果表明:2011年5月长江中下游降水异常偏少,6月转为异常偏多,出现了明显的旱涝转换。长江中下游地区的旱涝转换主要受南海季风、东亚季风强度以及西太平洋副热带高压(副高)的异常快速北跳的影响。研究还发现,6月亚洲中高纬长期维持两槽一脊的环流形势,东北冷涡活动频繁,多次引导冷空气南下。同时,副高异常偏北、偏西,并出现多次西伸过程。由于冷涡的加强南压与西伸的副高相互作用,促使长江以南地区西南气流明显增强,使得冷暖空气在长江中下游地区交汇,最终导致该地降水偏多。  相似文献   
86.
台风珍珠和鲇鱼北折路径对比分析   总被引:2,自引:0,他引:2  
曹晓岗  王慧  漆梁波 《气象》2012,38(7):841-847
“珍珠”(0601,Chanchu)和“鲇鱼”(1013,Megi)都是发生北折路径的台风,通过分析发现导致台风珍珠和鲇鱼路径北折的天气形势变化有一些相同点:都发生在环境场的调整中,有西风槽影响华南的副热带高压,使之减弱东退、台风移速减慢,然后副热带高压加强并从台风南部向西南伸展、与赤道高压打通,其西侧的偏南气流与越赤道气流会合引导台风向北移动;同时有弱冷空气南侵。上述环境场的突然变化导致引导气流方向发生突然变化,是这两个台风西行北折的重要原因。引导气流分析还发现,秋台风鲇鱼最佳引导气流所在高度低于初夏台风珍珠。另外,不同的路径预报方法、不同的模式和超级集合预报提供了各种台风路径预报信息,在应用这些信息时要密切结合实况天气形势的变化,进行路径预报订正。  相似文献   
87.
《地理教学》2012,(23):64-64
在俄罗斯的西伯利亚和远东地区出差数日,所见所闻,所思所想,无论是当地风土人情,还是风景地貌,都让我回味不已,甚至引起我对地区经济发展问题进行了思考。  相似文献   
88.
鄂毕河位于西伯利亚西部,是俄罗斯第四长河,也是世界上的一条著名长河。注入北冰洋鄂毕湾,鄂毕湾也是世界最长的河口。鄂毕河在当地不同民族中有不同的名字,奥斯蒂亚克人(Ostyak)称为As、Yag、Kolta以及Yema,撒摩耶人(Samoyede)称为Kolta或者Kuay,西伯利亚鞑靼人称为Omar或者Umar。鄂毕河长3650千米,流域面积达  相似文献   
89.
利用丹东多普勒雷达的基本反射率、基本径向速度和风廓线资料,对2010年8月19日和20日丹东地区大暴雨天气过程进行分析,探讨丹东短时强降水天气形势和多普勒雷达回波特征。结果表明:在丹东处于副热带高压内部或边缘时,南下的冷空气与副热带高压后部暖湿空气势力相当时,形成丹东地区较典型的暴雨模式。风廓线产品在强降水前期,会产生一个水汽累积的过程,两次过程中出现短时强降雨时段均表现为高空急流出现和高空动量下传。这种高空动量的下传使低空急流得到加强,低层进一步辐合,使雨强明显增大。两次过程中降水回波区均形成一条40 dBz以上的回波带,回波移动方向与回波带轴向一致,导致沿途站降水时间偏长,降水总量偏多。逆风区出现时间与强降雨时段有较好的配合,其位置与强回波区的对应关系揭示出逆风区厚度越大、对应的反射率因子强度越强,产生的降水强度也越大。  相似文献   
90.
利用常规气象资料分析了2009年早春苏南地区连阴雨期间的降水特点和环流形势特征。分析表明,此次连阴雨过程具有持续时间特别长、降水量特别多、最高气温偏低、雷暴天气频发等特点。连阴雨期间,欧亚上空高层中高纬环流经历贝湖低槽型、阻塞型和一槽一脊型3个阶段,亚洲中纬度地区多短波槽东移,保证了连阴雨天气的冷空气来源。孟加拉湾南支槽活跃,西太平洋副高偏北,从南海和菲律宾海经副高外围气流的水汽输送是此次连阴雨天气的主要水汽来源。由于冷暖空气在长江下游持续的相互作用,造成了苏南地区长达21天的阴雨天气。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号