首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6530篇
  免费   1862篇
  国内免费   2516篇
测绘学   360篇
大气科学   3970篇
地球物理   1238篇
地质学   2330篇
海洋学   1372篇
天文学   76篇
综合类   500篇
自然地理   1062篇
  2024年   26篇
  2023年   131篇
  2022年   290篇
  2021年   351篇
  2020年   361篇
  2019年   408篇
  2018年   362篇
  2017年   367篇
  2016年   384篇
  2015年   432篇
  2014年   545篇
  2013年   595篇
  2012年   598篇
  2011年   569篇
  2010年   437篇
  2009年   528篇
  2008年   450篇
  2007年   589篇
  2006年   436篇
  2005年   438篇
  2004年   352篇
  2003年   293篇
  2002年   238篇
  2001年   234篇
  2000年   215篇
  1999年   202篇
  1998年   199篇
  1997年   139篇
  1996年   108篇
  1995年   127篇
  1994年   113篇
  1993年   106篇
  1992年   64篇
  1991年   49篇
  1990年   35篇
  1989年   32篇
  1988年   31篇
  1987年   12篇
  1986年   8篇
  1985年   13篇
  1984年   9篇
  1983年   6篇
  1982年   8篇
  1981年   7篇
  1980年   5篇
  1978年   3篇
  1977年   1篇
  1976年   1篇
  1954年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
ENSO循环过程对南极海冰的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
应用 1 951- 2 0 0 2年NINO特征指数 (NINO1 +2 ,NINO3 ,NINO4 ,NINO3 .4)和 1 973-1 998年南极海冰北界范围以及 1 950- 2 0 0 1年SODA海洋温度资料。首先分析探讨了在ElNi no期间 ,堆积于赤道东太平洋的异常暖水在南半球的传播途径 ,进而研究了ENSO以及东南太平洋异常海温场与南极海冰之间的关系。结果表明 ,在ElNino期间 ,堆积于赤道东太平洋的异常暖水 ,是沿秘鲁和智利沿岸向极传播。其传播过程持续大约 1年的时间 ,但未发现沿南赤道流的西传现象。ENSO循环过程与南极海冰变化存在一定联系 ,特别是Amundsen Belling shausen海和南极半岛海冰的变化与ENSO暖事件 (ElNino)较为密切。当ElNino事件发生后 ,时滞 2年左右的时间 ,Amundsen Bellingshausen海和南极半岛的海冰将出现明显的减少现象 ,特别是南极半岛的海冰减少最为明显。ElNino事件对南极海冰的影响过程是 ,堆积于赤道东太平洋的大量异常暖水 ,沿南美 (秘鲁和智利 )沿岸近海向极地传播 ,异常暖水的这种向极传播过程将引起近极的海温场出现异常升高 ,最终导致Amundsen Bellingshausen海和南极半岛地区的海冰减少。自 2 0世纪 80年代以来 ,Amundsen Bellingshausen海和南极半岛的海冰出现明显减少的趋势 ,与这一时期的ElNino事件的频繁发生  相似文献   
993.
From April 1997 to June 1998 Nemurella pictetii populations were regularly sampled in two springstreams at 220 and 850 m a.s.l., respectively, in Hesse (Germany), at approximately 51°N. Random samples of larvae were taken at three week intervals during the vegetation period, and once a month during winter. Sex, instar, body length, head capsule width and wing pad length of all larvae were recorded. Temperatures were recorded every hour, temporal patterns of temperature agreed closely between sites. Mean winter lows were 3.9 °C at both sites, the mean summer high was 11.9 °C at the lower site, as opposed to 9.6 °C at the mountain site.At both sites, adult emergence started in May. At the mountain site, recruitment started in late July and continued into autumn. There was cohort splitting in the young generation. Some individuals grew rapidly until October–November, but last instar larvae first appeared in March the next year. 1600 degree-days above 0 °C were accumulated during complete development. At the lower site, recruitment began in early July, and cohort splitting also occurred. Fast growing summer recruits emerged as adults in late August, having accumulated only 700 degree-days (above 0 °C). Their offspring hatched in November-December and emerged the next spring, having accumulated also only 700 degree-days. However, only part of the population was bivoltine. Many of the summer recruits grew more slowly and accumulated close to 1900 degree days until they emerged the next spring, together with the offspring of their own fast-growing siblings. Dependence of growth rate on temperature could not be estimated and appears to vary with daylength. For example, 3–6 °C support growth and development provided daylength exceeds 10 hrs of light, or is rising.At both sites and in all cohorts individuals emerging earliest were larger than later emerging ones. The size decline is significantly correlated with number of days after the winter solstice. For the first time it is shown that the decline does not occur shortly before adult emergence but actually takes place several instars before the last. Size differences are then carried on, and amplified, during subsequent molts, until adulthood. The literature presently relates seasonal size declines of insects to high or rising temperatures experienced by larvae approaching adulthood. Our data show that, at least in Nemurella, this explanation fails. On average, females were distinctly larger than males. Differences in mean last instar size were noticed also between sites and years. They remain presently unexplained. The mean sex ratio in both populations was close to 1:1.  相似文献   
994.
研究发现三马坊水温对应某些构造带上的地震,其前兆异常有相似性和重复性特征.对应北西向张渤构造带上的地震,其前兆异常形态为突降型,对应东西向阴山-燕山构造带上的地震,其前兆异常形态为上升型,表明水温前兆异常的相似性和重复性特征受活动性构造体系所控制.深入研究三马坊水温前兆异常特征与活动构造带间的关系,可能是突破该地区地震短临预报的有效途径.  相似文献   
995.
分析了天水台数字深井水温资料在陕西石泉ML4.7级地震前的异常特征,发现在震前5天内深井水温发生大幅度的降升变化,呈负脉冲形态,表现为典型的脉冲型前兆异常形态特征。  相似文献   
996.
青藏铁路抛石路基的温度特性研究   总被引:12,自引:8,他引:12  
铁路道渣和片石铺层的对流换热为多孔介质的热传导问题,根据多孔介质中流体热对流的连续性方程、动量方程和能量方程,应用伽辽金法导出了多孔介质对流换热的有限元公式,并对抛石路基和传统道渣路基在未来25a创温度变化进行了预报分析和比较.计算结果表明,在150cm的抛石厚度,片石直径为10cm,年温度较差30℃的倩况下,在路基中心线y=一5m处,抛石路基下的冻土温度要比传统路基的温度低2.45℃,抛石路基有对其下面的冻土提供冷能的制冷作用,可以保证冻土路基的稳定.因此,推荐该种路基作为青藏铁路高温冻土区的路基结构,可以最大限度地保护冻土区的铁路.  相似文献   
997.
冻土路基表面的融化指数与冻结指数   总被引:21,自引:6,他引:21  
在冻土层之上筑路,由于会改变地-气界面的热物理特性,进而影响冻土层的热力→动力稳定性,故而修筑一定高度的路基成为保护冻土层所采取的一种常规措施.在修筑路基之后,与路基边坡的朝向有关的热效应是冻土路基工程保护措施必须考虑的问题.在数理分析与数值模拟分析的基础上,给出了可根据气温的年最大和最小月平均值计算路基表面的融化指数与冻结指数以及有关热状况参数的方法,并以青藏铁路北麓河段2002年为例进行了计算分析.实例分析表明,即便是没有修筑道路,北麓河地区的冻土也已经处于临界状态;路基相对的两个坡面,由于朝向不同会造成温度分布的强非均匀性,其中南和偏南方向与北和偏北方向的路基坡面热状况差异最大,有必要对路基相对的两个坡面采用不同的防护措施,一方面改善就地取土修筑路基对其下伏冻土层的直接不良影响,同时也尽可能减小路基表面温度分布的非均匀性,以避免纵向裂缝的发生。  相似文献   
998.
青藏铁路管道通风试验路基地温变化及热状况分析   总被引:3,自引:6,他引:3  
基于青藏铁路北麓河试验段管道通风路基在2个冻融循环周期内的地温监测资料,分析了路基温度的发展、温度场分布特征及多年冻土的热流量变化.结果表明:通风管埋设于路堤中部的路基温度变化和发展情况与一般路基类似,路基在施工后的2个冻融周期内仍处于整体升温的过程;通风管埋设于路堤下部的路基,虽然前2个冻融循环周期内土体温度与原始状态相比同样有所升高,但开始出现逐渐降低的趋势,同时地温场的分布在横向上的对称性也比较好,在热交换方面,一般填土路基和通风管位于路堤中部的路基在施工后的前2个冻融循环周期内一直处于吸热过程,而通风管位于路堤下部的路基在经历了第1个周期的持续吸热过程后,在第2个冻融循环周期内已经开始放热。  相似文献   
999.
地震荷载作用下温度和围压对冻土强度影响的试验研究   总被引:6,自引:4,他引:6  
通过对重塑冻结兰州黄土的动三轴试验,较系统研究了地震荷载作用下冻土的动强度特性,并且定量研究了其在不同温度(-2℃、-5℃、-7℃)和围压(1MPa、3MPa、5MPa)条件下的变化规律.结果发现:冻结黄土的动抗剪强度随围压的增大、温度的降低、振次的减少而增大;动粘聚力Cd随振次的减小和温度的降低而增大;动内摩擦角吼随振次的增大和温度的降低而增大。  相似文献   
1000.
慕士塔格冰芯钻孔温度测量结果   总被引:1,自引:2,他引:1  
2002年8月对慕士塔格冰川累积区海拔6300m左右的两根冰芯钻孔(其中—根达到冰川底部基岩)进行了温度测量,揭示了该处冰川的温度分布特征.结果表明:慕士塔格冰芯的冰温是目前中低纬地区山地冰川中最低的,达-21.79℃,该最低温度出现的位置在35m以下;冰床底部的温度为-20.76℃,也远低于其它山地冰川的冰床温度,极低的温度对成冰过程有重要影响,并有利于获得可靠的冰芯记录。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号