首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   680篇
  免费   115篇
  国内免费   90篇
测绘学   60篇
大气科学   78篇
地球物理   245篇
地质学   183篇
海洋学   218篇
天文学   38篇
综合类   28篇
自然地理   35篇
  2024年   2篇
  2022年   2篇
  2021年   6篇
  2020年   13篇
  2019年   12篇
  2018年   10篇
  2017年   24篇
  2016年   27篇
  2015年   13篇
  2014年   32篇
  2013年   49篇
  2012年   35篇
  2011年   36篇
  2010年   49篇
  2009年   57篇
  2008年   53篇
  2007年   58篇
  2006年   40篇
  2005年   36篇
  2004年   30篇
  2003年   39篇
  2002年   30篇
  2001年   18篇
  2000年   23篇
  1999年   24篇
  1998年   26篇
  1997年   15篇
  1996年   8篇
  1995年   14篇
  1994年   23篇
  1993年   18篇
  1992年   11篇
  1991年   7篇
  1990年   8篇
  1989年   12篇
  1988年   5篇
  1987年   9篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1980年   1篇
  1978年   2篇
  1973年   2篇
排序方式: 共有885条查询结果,搜索用时 15 毫秒
1.
Boussinesq波浪模型是一类相位解析模型,在时域内求解需要较高的空间和时间分辨率以保证计算精度。为提高计算效率,有必要针对该类模型开展并行算法的研究。与传统的中央处理器(CPU)相比,图形处理器(GPU)有大量的运算器,可显著提高计算效率。基于统一计算设备架构CUDA C语言和图形处理器,实现了Boussinesq模型的并行运算。将本模型的计算结果同CPU数值模拟结果和解析解相比较,发现得到的结果基本一致。同时也比较了CPU端与GPU端的计算效率,结果表明,GPU数值模型的计算效率有明显提升,并且伴随数值网格的增多,提升效果更为明显。  相似文献   
2.
本文基于具备间断捕捉能力的二阶全非线性Boussinesq数值模型,对规则波和随机波在礁坪地形上的传播变形进行了数值模拟。该模型采用高阶有限体积法和有限差分方法求解守恒格式的控制方程,将波浪破碎视为间断,同时采用静态重构技术处理了海岸动边界问题。重点针对礁坪上波浪传播过程中的波高空间分布和沿程衰减,礁坪上的平均水位变化,以及波浪能量频谱的移动和空间差异等典型水动力现象开展数值计算。将数值结果与实验结果对比,两者吻合情况良好,验证了模型具有良好的稳定性,具备模拟破碎波浪和海-岸动边界的能力,能较为准确地模拟波浪在礁坪地形上的传播过程中发生的各种水动力现象。  相似文献   
3.
This study uses instrumented buildings and models of code‐based designed buildings to validate the results of previous studies that highlighted the need to revise the ASCE 7 Fp equation for designing nonstructural components (NSCs) through utilizing oversimplified linear and nonlinear models. The evaluation of floor response spectra of a large number of instrumented buildings illustrates that, unlike the ASCE 7 approach, the in‐structure and the component amplification factors are a function of the ratio of NSC period to the supporting building modal periods, the ground motion intensity, and the NSC location. It is also shown that the recorded ground motions at the base of instrumented buildings in most cases are significantly lower than design earthquake (DE) ground motions. Because ASCE 7 is meant to provide demands at a DE level, for a more reliable evaluation of the Fp equation, 2 representative archetype buildings are designed based on the ASCE 7‐16 seismic provisions and exposed to various ground motion intensity levels (including those consistent with the ones experienced by instrumented buildings and the DE). Simulation results of the archetype buildings, consistent with previous numerical studies, illustrate the tendency of the ASCE 7 in‐structure amplification factor, [1 + 2(z/h)] , to significantly overestimate demands at all floor levels and the ASCE 7 limit of to in many cases underestimate the calculated NSC amplification factors. Furthermore, the product of these 2 amplification factors (that represents the normalized peak NSC acceleration) in some cases exceeds the ASCE 7 equation by a factor up to 1.50.  相似文献   
4.
A shallow-water model with horizontally nonuniform density is used to study the dynamics of jet flows that arise under the influence of buoyancy and the Coriolis force. Within this approach, the jet is described by a self-similar compactly-localized solution and interpreted as a band of shear flow having a temperature contrast with the ambient fluid. In addition to stationary states, the dynamics of such jets admit cyclonic rotation with a constant angular velocity and transverse nonlinear pulsations. The phase portrait corresponding to this model shows that regimes with pulsating jets develop along closed trajectories bounded by the separatrix loop. The theory predicts that the period for warm jet pulsations is longer than the inertial oscillation period caused by the Earth’s rotation, while for cold jet pulsations, it is shorter. Thus, only warm jets can have a noticeable effect on the atmospheric dynamics in the synoptic range. In particular, they may well be responsible for additional spectral peaks that appear in this range of wind speed fluctuations.  相似文献   
5.
The paper is focused on the analysis of the drift of tabular iceberg observed in 2009 in the marginal ice zone of the North-West Barents Sea. Momentum balance equations are derived from the Kirchhoff equations describing plane motion of solid body in an ideal fluid. Field works performed on the drift iceberg and on the drift icenear the iceberg are described. Results of the field works and numerical simulations of the iceberg drift and rotation are performed and discussed. It is shown that acceleration of water flow around the iceberg has visible influence on the iceberg drift. Kinetic energy balance of drift iceberg is used to estimate the forces applied to the iceberg by the drift ice.  相似文献   
6.
FluBiDi is a two-dimensional model created to simulate real events that can take days and months, as well as short events (minutes or hours) and inclusive laboratory tests. To verify the robustness of FluBiDi, it was tested using a previous study with both designed and real digital elevation models. The results highlight good agreement between the models (i.e. Mike Flood, SOBEK, ISIS 2D, and others) tested and FluBiDi (around 90% for a specific instant and 95% for the complete time simulation). In the simulated hydrographs, the discharge peak value, time to peak, and water level results were accurate, reproducing them with an error of less than 5%. The velocity differences observed in a couple of tests in FluBiDi were associated with very short periods of time (seconds). However, FluBiDi is highly accurate for simulating floods under real topographical conditions with differences of around 2 cm when water depth is around 150 cm. The average water depth and velocities are precise, and the model describes with high accuracy the pattern and extent of floods. FluBiDi has the capability to be adjusted to different types of events and only requires limited input data.  相似文献   
7.
This study presents two-dimensional direct numerical simulations for sediment-laden current with higher density propagating forward through a lighter ambient water. The incompressible NavierStokes equations including the buoyancy force for the density difference between the light and heavy fluids are solved by a finite difference scheme based on a structured mesh. The concentration transport equations are used to explore such rich transport phenomena as gravity and turbidity currents. Within the framework of an Upwinding Combined Compact finite Difference (UCCD) scheme, rigorous determination of weighting coefficients underlies the modified equation analysis and the minimization of the numerical modified wavenumber. This sixth-order UCCD scheme is implemented in a four-point grid stencil to approximate advection and diffusion terms in the concentration transport equations and the first-order derivative terms in the Navier-Stokes equations, which can greatly enhance convective stability and increase dispersive accuracy at the same time. The initial discontinuous concentration field is smoothed by solving a newly proposed Heaviside function to prevent numerical instabilities and unreasonable concentration values. A two-step projection method is then applied to obtain the velocity field. The numerical algorithm shows a satisfying ability to capture the generation, development, and dissipation of the Kelvin-Helmholz instabilities and turbulent billows at the interface between the current and the ambient fluid. The simulation results also are compared with the data in published literatures and good agreements are found to prove that the present numerical model can well reproduce the propagation, particle deposition, and mixing processes of lock-exchange gravity and turbidity currents.  相似文献   
8.
An axisymmetric underwater vehicle (UV) at a steady drift angle experiences the complex three-dimensional crossflow separation. This separation arises from the unfavorable circumferential pressure gradient developed from the windward side toward the leeward side. As is well known, the separated flow in the leeward side gives rise to the formation of a pair of vortices, which affects considerably the forces and moments acting on the UV. In this regard, the main purpose of the present study is to evaluate the role of the leeward vortical flow structure in the hydrodynamic behavior of a shallowly submerged UV at a moderate drift angle traveling beneath the free surface. Accordingly, the static drift tests are performed on the SUBOFF UV model using URANS equations coupled with a Reynolds stress turbulence model. The simulations are carried out in the commercial code STARCCM+ at a constant advance velocity based on Froude number equal to Fn = 0.512 over submergence depths and drift angles ranging from h = 1.1D to h = ∞ and from β = 0 to β = 18.11°, respectively. The validation of the numerical model is partially conducted by using the existing experimental data of the forces and moment acting on the totally submerged bare hull model. Significant interaction between the low-pressure region created by the leeward vortical flow structure and the free surface is observed. As a result of this interaction, the leeward vortical flow structure appears to be largely responsible for the behavior of the forces and moments exerted on a shallowly submerged UV at steady drift.  相似文献   
9.
基于地震波场能量构建的能量互相关成像条件,具有易实现、物理意义明确及背向散射压制效果明显等优势.但是,目前构建的能量互相关成像条件仅适用于二阶弹性波方程,难以直接应用于一阶弹性波方程.为此,本文针对一阶弹性波方程,基于能量守恒定理及能量密度,构建以速度-应力为参数的能量范数以表征弹性波场能量,将速度-应力能量范数拓展为能量内积以提取弹性波场反射能量.震源端与检波端的基矢量正方向保持一致的基础上,构建得到可有效压制背向散射的弹性波能量成像条件.数值模拟结果表明:该成像条件可以得到背向散射压制、振幅有效保持的能量成像结果.  相似文献   
10.
Large proportions of rainwater and snowmelt infiltrate into the subsurface before contributing to stream flow and stream water quality. Subsurface flow dynamics steer the transport and transformation of contaminants, carbon, weathering products and other biogeochemistry. The distribution of groundwater ages with depth is a key feature of these flow dynamics. Predicting these ages are a strong test of hypotheses about subsurface structures and time-varying processes. Chlorofluorocarbon (CFC)-based groundwater ages revealed an unexpected groundwater age stratification in a 0.47 km2 forested catchment called Svartberget in northern Sweden. An overall groundwater age stratification, representative for the Svartberget site, was derived by measuring CFCs from nine different wells with depths of 2–18 m close to the stream network. Immediately below the water table, CFC-based groundwater ages of already 30 years that increased with depth were found. Using complementary groundwater flow models, we could reproduce the observed groundwater age stratification and show that the 30 year lag in rejuvenation comes from return flow of groundwater at a subsurface discharge zone that evolves along the interface between two soil types. By comparing the observed groundwater age stratification with a simple analytical approximation, we show that the observed lag in rejuvenation can be a powerful indicator of the extent and structure of the subsurface discharge zone, while the vertical gradient of the age-depth-relationship can still be used as a proxy of the overall aquifer recharge even when sampled in the discharge zone. The single age stratification profile measured in the discharge zone, close to the aquifer outlet, can reveal the main structure of the groundwater flow pattern from recharge to discharge. This groundwater flow pattern provides information on the participation of groundwater in the hydrological cycle and indicates the lower boundary of hydrological connectivity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号