首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22761篇
  免费   5964篇
  国内免费   7867篇
测绘学   557篇
大气科学   6999篇
地球物理   4125篇
地质学   13350篇
海洋学   3794篇
天文学   107篇
综合类   2108篇
自然地理   5552篇
  2024年   80篇
  2023年   388篇
  2022年   1015篇
  2021年   1052篇
  2020年   1110篇
  2019年   1294篇
  2018年   1130篇
  2017年   1171篇
  2016年   1174篇
  2015年   1291篇
  2014年   1711篇
  2013年   1659篇
  2012年   1832篇
  2011年   1782篇
  2010年   1440篇
  2009年   1617篇
  2008年   1538篇
  2007年   1769篇
  2006年   1735篇
  2005年   1499篇
  2004年   1363篇
  2003年   1239篇
  2002年   1059篇
  2001年   973篇
  2000年   893篇
  1999年   840篇
  1998年   649篇
  1997年   607篇
  1996年   514篇
  1995年   459篇
  1994年   410篇
  1993年   337篇
  1992年   253篇
  1991年   196篇
  1990年   122篇
  1989年   120篇
  1988年   91篇
  1987年   52篇
  1986年   28篇
  1985年   25篇
  1984年   12篇
  1983年   3篇
  1982年   5篇
  1981年   5篇
  1980年   12篇
  1979年   9篇
  1978年   11篇
  1977年   13篇
  1976年   1篇
  1954年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Wildfire increases the potential connectivity of runoff and sediment throughout watersheds due to greater bare soil, runoff and erosion as compared to pre-fire conditions. This research examines the connectivity of post-fire runoff and sediment from hillslopes (< 1.5 ha; n = 31) and catchments (< 1000 ha; n = 10) within two watersheds (< 1500 ha) burned by the 2012 High Park Fire in northcentral Colorado, USA. Our objectives were to: (1) identify sources and quantify magnitudes of post-fire runoff and erosion at nested hillslopes and watersheds for two rain storms with varied duration, intensity and antecedent precipitation; and (2) assess the factors affecting the magnitude and connectivity of runoff and sediment across spatial scales for these two rain storms. The two summer storms that are the focus of this research occurred during the third summer after burning. The first storm had low intensity rainfall over 11 hours (return interval <1–2 years), whereas the second event had high intensity rainfall over 1 hour (return interval <1–10 years). The lower intensity storm was preceded by high antecedent rainfall and led to low hillslope sediment yields and channel incision at most locations, whereas the high intensity storm led to infiltration-excess overland flow, high sediment yields, in-stream sediment deposition and channel substrate fining. For both storms, hillslope-to-stream sediment delivery ratios and area-normalised cross-sectional channel change increased with the percent of catchment that burned at high severity. For the high intensity storm, hillslope-to-stream sediment delivery ratios decreased with unconfined channel length (%). The findings quantify post-fire connectivity and sediment delivery from hillslopes and streams, and highlight how different types of storms can cause varying magnitues and spatial patterns of sediment transport and deposition from hillslopes through stream channel networks.  相似文献   
2.
The source and hydrochemical makeup of a stream reflects the connectivity between rainfall, groundwater, the stream, and is reflected to water quantity and quality of the catchment. However, in a semi-arid, thick, loess covered catchment, temporal variation of stream source and event associated behaviours are lesser known. Thus, the isotopic and chemical hydrographs in a widely distributed, deep loess, semi-arid catchment of the northern Chinese Loess Plateau were characterized to determine the source and hydrochemical behaviours of the stream during intra-rainfall events. Rainfall and streamflow were sampled during six hydrologic events coupled with measurements of stream baseflow and groundwater. The deuterium isotope (2H), major ions (Cl, SO42−, NO3, Ca2+, K+, Mg2+, and Na+) were evaluated in water samples obtained during rainfall events. Temporal variation of 2H and Cl measured in the groundwater and stream baseflow prior to rainfall was similar; however, the isotope compositions of the streamflow fluctuated significantly and responded quickly to rainfall events, likely due to an infiltration excess, overland dominated surface runoff during torrential rainfall events. Time source separation using 2H demonstrated greater than 72% on average, the stream composition was event water during torrential rainfall events, with the proportion increasing with rainfall intensity. Solutes concentrations in the stream had loglinear relationships with stream discharge, with an outling anomaly with an example of an intra-rainfall event on Oct. 24, 2015. Stream Cl behaved nonconservative during rainfall events, temporal variation of Cl indicated a flush and washout at the onset of small rainfall events, a dilution but still high concentration pattern in high discharge and old water dominated in regression flow period. This study indicates rainfall intensity affects runoff responses in a semi-arid catchment, and the stored water in the thick, loess covered areas was less connected with stream runoff. Solute transport may threaten water quality in the area, requiring further analysis of the performance of the eco-restoration project.  相似文献   
3.
Numerous efforts have been made to understand stemflow dynamics under different types of vegetation at the inter-event scale, but few studies have explored the stemflow characteristics and corresponding influencing factors at the intra-event scale. An in-depth investigation of the inter- and intra-event dynamics of stemflow is important for understanding the ecohydrological processes in forest ecosystems. In this study, stemflow volume (FV), stemflow funnelling ratio (FR), and stemflow ratio (F%) from Quercus acutissima and Broussonetia papyrifera trees were measured at both inter- and intra-event scales in a subtropical deciduous forest, and the driving factors, including tree species and meteorological factors were further explored. Specifically, the FV, FR and F% of Q. acutissima (52.3 L, 47.2, 9.6%) were lower than those of B. papyrifera (85.1 L, 91.2, 12.4%). The effect of tree species on FV and F% was more obvious under low intensity rainfall types. At the inter-event scale, FV had a strong positive linear correlation with rainfall amount (GP) and event duration (DE) for both tree species, whereas FR and F% had a positive logarithmic correlation with GP and DE only under high-intensity, short-duration rainfall type. FR and F% were mainly affected by wind speed and the maximum 30-min rainfall intensity under low-intensity, long-duration rainfall type. At the intra-event scale, for both tree species, the mean lag time between the start of rainfall and stemflow was the shortest under high-intensity, short-duration rainfall type, while the mean duration and amount of stemflow after rain cessation were the greatest under high-amount, long-duration rainfall type. The relationship between stemflow intensity and rainfall intensity at the 5-min interval scale also depended greatly on rainfall type. These findings can help clarify stemflow dynamics and driving factors at both inter- and intra-event scales, and also provide abundant data and parameters for ecohydrological simulations in subtropical forests.  相似文献   
4.
Current efforts to assess changes to the wetland hydrology caused by growing anthropogenic pressures in the Athabasca Oil Sands Region (AOSR) require well-founded spatial and temporal estimates of actual evapotranspiration (ET), which is the dominant component of the water budget in this region. This study assessed growing season (May–September) and peak growing season (July) ET variability at a treed moderate-rich fen and treed poor fen (in 2013–2018), open poor fen (in 2011–2014), and saline fen (in 2015–2018) using eddy covariance technique and a set of complementary environmental data. Seasonal fluctuations in ET were positively related to net radiation, air temperature and vapour pressure deficit and followed trends typical for the Boreal Plains (BP) and AOSR with highest rates in June–July. However, no strong effect of water table position on ET was found. Strong surface control on ET is evident from lower ET values than potential evapotranspiration (PET); the lowest ET/PET was observed at saline fen, followed by open fen, moderately treed fen, and heavily treed fen, suggesting a strong influence of vegetation on water loss. In most years PET exceeded precipitation (P), and positive relations between P/PET and ET were observed with the highest July ET rates occurring under P/PET ~1. However, during months with P/PET > 1, increased P/PET was associated with decreased July ET. With respect to 30-year mean values of air temperature and P in the area, both dry and wet, cool and warm growing seasons (GS) were observed. No clear trends between ET values and GS wetness/coldness were found, but all wet GS were characterized by peak growing seasons with high daily ET variability.  相似文献   
5.
The H. J. Andrews Experimental Forest (HJA) encompasses the 6400 ha Lookout Creek watershed in western Oregon, USA. Hydrologic, chemistry and precipitation data have been collected, curated, and archived for up to 70 years. The HJA was established in 1948 to study the effects of harvest of old-growth conifer forest and logging-road construction on water quality, quantity and vegetation succession. Over time, research questions have expanded to include terrestrial and aquatic species, communities and ecosystem dynamics. There are nine small experimental watersheds and 10 gaging stations in the HJA, including both reference and experimentally treated watersheds. Gaged watershed areas range from 8.5 to 6242 ha. All gaging stations record stage height, water conductivity, water temperature and above-stream air temperature. At nine of the gage sites, flow-proportional water samples are collected and composited over 3-week intervals for chemical analysis. Analysis of stream and precipitation chemistry began in 1968. Analytes include dissolved and particulate species of nitrogen and phosphorus, dissolved organic carbon, pH, specific conductance, suspended sediment, alkalinity, and major cations and anions. Supporting climate measurements began in the 1950s in association with the first small watershed experiments. Over time, and following the initiation of the Long Term Ecological Research (LTER) grant in 1980, infrastructure expanded to include a set of benchmark and secondary meteorological stations located in clearings spanning the elevation range within the Lookout Creek watershed, as well as a large number of forest understory temperature stations. Extensive metadata on sensor configurations, changes in methods over time, sensor accuracy and precision, and data quality control flags are associated with the HJA data.  相似文献   
6.
超大陆演化是地质研究的重要内容,华北克拉通与不同地质历史时期超大陆汇聚与裂解的联系对反演华北克拉通构造演化历史具有重要意义。本文在辽吉古元古代造山带中段的原划分为辽河群地层中首次识别出一套早古生代沉积建造。这套沉积建造与华北克拉通以浅海相的碳酸盐岩为主的早古生代沉积并不一致,以发育大量的陆源碎屑沉积为特征。我们对2件细砂岩分别进行了锆石LA-ICP-MS和SHRIMP U-Pb定年。定年结果显示,2件样品的最小年龄分别为~482Ma和~498Ma,反映了它们的最大沉积时代。2件样品的碎屑锆石年龄主要介于1600~500Ma,缺乏亲华北的物源信息,表明它们的物源主要来自于华北之外。2件样品年龄谱中最重要的峰值出现在格林威尔期和泛非期,表明华北克拉通曾与罗迪尼亚超大陆和冈瓦纳大陆存在联系。格林威尔期碎屑锆石可能来自于罗迪尼亚超大陆时期波罗地古陆物质在华北克拉通东缘的再循环;泛非期碎屑锆石可能来自于东冈瓦纳大陆的北缘造山带。  相似文献   
7.
利用最新发布的CALIPSO产品,构建了2007-2017年中国沙尘气溶胶的三维分布,并结合HYSPLIT-4模式和再分析数据,探讨了沙尘的三维输送过程。结果表明:中国的沙尘排放源区主要是塔克拉玛干沙漠和巴丹吉林沙漠,沙尘气溶胶出现频率分别为60%和35%。塔克拉玛干沙漠排放的沙尘主要(50%~70%)停留在源地0~6 000 m高度,少部分向东输送至甘肃和内蒙古;巴丹吉林沙漠排放的沙尘则主要向东输送。中国沙尘排放量在春季最大,向东输送最强;夏季,东亚夏季风限制了沙尘向东输送;秋季,沙尘排放减弱,输送强度和夏季相当;沙尘排放量在冬季最小,输送最弱。夏季,沙尘在输送过程中可被抬升至高度5 000 m以上,春季次之,秋、冬季的沙尘主要在低层大气输送。沙尘在向东输送的过程中被抬升并和当地人为污染物混合变为污染性沙尘,华北地区污染性沙尘出现频率高达30%;输送到海洋的沙尘也会与洋面上(0~3 000 m高度)的海盐气溶胶混合,出现频率约为10%。  相似文献   
8.
吴迪  刘永江  李伟民  常瑞虹 《岩石学报》2020,36(8):2571-2588
连山关地区位于华北克拉通北缘铀成矿省辽东铀成矿带,已知铀矿床(点)均发育在韧性剪切带附近。为了解韧性剪切带运动学、几何学构造变形机制及与铀矿的关系,本文以连山关岩体周缘韧性剪切带为研究对象,通过野外宏观调查和室内微观研究相结合的研究方法,探讨构造变形期次、韧性剪切带形成机理及其对铀成矿的控制作用。研究表明:连山关岩体周缘发育的韧性剪切带与近南北向挤压构造变形有关,其右行韧性剪切带应变类型为压扁应变,属于一般压缩-平面应变范围,Flinn指数K值在0.19~0.69之间,岩石类型属于S/SL型构造岩。研究区内铀矿体均为隐伏盲矿体,主要赋存于沿着连山关岩体和辽河群接触带右行剪切作用形成的背斜褶皱核部,和北东东向断裂关系密切。综合分析认为,连山关岩体南缘北西向韧性剪切带为一级控矿构造,是区内铀矿热液运移的通道,而剪切带边部的晚期北东东向断裂则是铀矿储存空间;铀源可能来自于太古宙古风化壳,并在大型韧性剪切活动(提供热液运移通道)和基性脉岩侵入(提供热源和还原剂)等综合因素作用下运移、富集成矿。  相似文献   
9.
《China Geology》2020,3(3):462-472
The scientific field test site of rainfall-soil moisture-groundwater conversion in Dabie Mountain Area–Jianghan Plain is located in the northern region of the Jianghan Plain, the transition zone between the Dabie Mountain Area and Jianghan Plain. It’s a great field test site to study the material and energy exchange among rainfall, soil moisture, and groundwater of the Earth ’s critical zone in subtropical monsoon climate plain areas. This paper analyzed the connection between rainfall and volume water content (VWC) of soil at different depths of several soil profiles, and the dynamic feature of groundwater was discussed, which reveals the rainfall infiltration recharge of Quaternary Upper Pleistocene strata. The results show that the Quaternary Upper Pleistocene aquifer groundwater accepts a little direct rainfall recharge, while the lateral recharge is the main supplement source. There were 75 effective rainfall events among 120 rainfall events during the monitoring period, with an accumulated amount of 672.9 mm, and the percentages of effective rainfall amount and duration time were 62.50% and 91.56%, respectively. The max evaporation depth at the upper part in Quaternary cohesive soil was no less than 1.4 m. The soil profile was divided into four zones: (1) The sensitive zone of rainfall infiltration within 1.4 m, where the material and energy exchange frequently near the interface between atmosphere and soil; (2) the buffer zone of rainfall infiltration between 1.4 m and 3.5 m; (3) the migration zone of rainfall infiltration between 3.5 m and 5.0 m; and (4) the rainfall infiltration and groundwater level co-influenced zone below 5.0 m. The results revealed the reaction of soil moisture and groundwater to rainfall in the area covered by cohesive soil under humid climate in Earth ’s critical zone, which is of great theoretical and practical significance for groundwater resources evaluation and development, groundwater environmental protection, ecological environmental improvement, drought disaster prevention, and flood disaster prevention in subtropical monsoon climate plain areas.  相似文献   
10.
全球观鸟活动的规模达到了每年几千万人次,观鸟旅游已经成为世界野生动物观赏业的重要组成部分。气候变化改变了鸟类物候期及其空间格局,这不仅会影响观鸟者的旅游活动,还会进一步对观鸟旅游利益相关者的生计产生影响。监测并尽早地识别出这些影响,提醒利益相关者采取有效的适应策略意义重大。本文引入物候期这一气候变化的“指示器”来反映开展观鸟旅游的重要资源基础——鸟类活动时间以及栖息地格局的变化。通过对1980-2010年中国26个地区的98个物候序列的鸟类研究进行荟萃分析发现:中国鸟类离开、抵达、停留时间以及鸟类栖息地的格局都已经发生了改变。春季、夏季鸟类会提前离开或抵达,但在秋季它们的活动会延迟。鸟类停留的时间主要呈现延长的趋势。温度升高会使鸟类停留时间变长,对观鸟旅游的开展有利。中国低纬度地区和西部地区鸟类停留时间更长。鸟类栖息地的格局呈现出向北和向西迁移的特征。游客和景区工作人员均已感知到鸟类活动时间以及栖息地格局的变化对观鸟旅游产生的影响。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号