首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14284篇
  免费   2486篇
  国内免费   4020篇
测绘学   673篇
大气科学   815篇
地球物理   2482篇
地质学   10683篇
海洋学   1345篇
天文学   26篇
综合类   984篇
自然地理   3782篇
  2024年   31篇
  2023年   183篇
  2022年   500篇
  2021年   644篇
  2020年   662篇
  2019年   721篇
  2018年   670篇
  2017年   558篇
  2016年   707篇
  2015年   729篇
  2014年   919篇
  2013年   982篇
  2012年   869篇
  2011年   1024篇
  2010年   900篇
  2009年   984篇
  2008年   963篇
  2007年   997篇
  2006年   1111篇
  2005年   883篇
  2004年   871篇
  2003年   740篇
  2002年   694篇
  2001年   596篇
  2000年   498篇
  1999年   427篇
  1998年   389篇
  1997年   306篇
  1996年   268篇
  1995年   198篇
  1994年   168篇
  1993年   141篇
  1992年   110篇
  1991年   99篇
  1990年   66篇
  1989年   48篇
  1988年   36篇
  1987年   20篇
  1986年   20篇
  1985年   14篇
  1984年   13篇
  1983年   9篇
  1982年   10篇
  1981年   5篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1976年   1篇
  1973年   2篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
1.
The Bear Brook Watershed in Maine (BBWM) is a long-term research site established to study the response of forest ecosystem function to environmental disturbances of chronic acidic deposition and ecosystem nitrogen enrichment. Starting in 1989, the West Bear (treated) watershed received bimonthly applications of ammonium sulfate [(NH4)2SO4] fertilizer from above the canopy, whereas East Bear (reference) received ambient deposition. The treatments were stopped in 2016, marking the beginning of the recovery phase. Research at the site has focused on soils, streams, and vegetation. Here, we describe data collected over three decades at the BBWM—input and stream output nutrient fluxes, quantitative soil pits and soil chemistry, and soil temperature and moisture.  相似文献   
2.
Macrophyte community diversity and composition respond to ecosystem conservation and local environmental factors. In this study, we developed a multidimensional diversity framework for macrophyte communities, including the taxonomic and functional alpha and beta diversity. We used the framework to explore the relationships among water level regimes and these diversity parameters in a case study of China's Baiyangdian Lake. Analysis of indicators of hydrologic alteration divided the water level from 1959 to 2019 into four regimes (dry, <6.42 m; low, 6.42–7.23 m; medium, 7.23–8.19 m; high, >8.19 m). Alpha and beta diversity were significantly higher in the medium regime than in the low and high regimes. Redundancy analysis indicated that the maximum water depth significantly affected taxonomic alpha diversity, and total nitrogen (TN) and chemical oxygen demand (COD) concentration significantly affected functional alpha diversity, respectively. Mantel tests showed that TN, Secchi depth (SD), and water depth in the high water level regime significantly increased the total beta diversity and turnover components. TN was the main factor that increased total taxonomic beta diversity. Water level regime mainly influenced interspecific relationships by changing the TN and COD concentration. The water level should be maintained between the medium and high water level regimes to promote restoration of the macrophyte community and improve ecosystem stability. The biodiversity evaluation framework would provide a deeper insight into the hydrological process management for restoration of aquatic macrophyte communities in shallow lakes.  相似文献   
3.
青州市表层土壤元素地球化学组合特征研究   总被引:1,自引:0,他引:1       下载免费PDF全文
聚类分析和因子分析可以获得土壤元素地球化学组合特征及其差异性。对青州市表层土壤样品数据进行分析研究,通过聚类分析,绘制表层土壤元素聚类谱系图,将23种元素或指标分为5个元素组合簇群及2个单元素簇,研究各元素间的组合特征,探讨其相关性、聚集性及其指示意义;通过因子分析,找出有代表性的因子,用其代表变量,绘制典型因子得分等值线图,并从中分析不同元素组合的区域分布基于何种因素,用11个代表性因子的分布特征就基本可以代表青州市表层土壤23项原始变量的分布特征,并对F1,F2,F3主因子进行了地质解释。聚类分析与因子分析相结合,利于表层土壤中元素的共生组合特征及其差异性研究,利于对研究区表层土壤异常进行归纳总结。  相似文献   
4.
Forests in the Southeastern United States are predicted to experience future changes in seasonal patterns of precipitation inputs as well as more variable precipitation events. These climate change‐induced alterations could increase drought and lower soil water availability. Drought could alter rooting patterns and increase the importance of deep roots that access subsurface water resources. To address plant response to drought in both deep rooting and soil water utilization as well as soil drainage, we utilize a throughfall reduction experiment in a loblolly pine plantation of the Southeastern United States to calibrate and validate a hydrological model. The model was accurately calibrated against field measured soil moisture data under ambient rainfall and validated using 30% throughfall reduction data. Using this model, we then tested these scenarios: (a) evenly reduced precipitation; (b) less precipitation in summer, more in winter; (c) same total amount of precipitation with less frequent but heavier storms; and (d) shallower rooting depth under the above 3 scenarios. When less precipitation was received, drainage decreased proportionally much faster than evapotranspiration implying plants will acquire water first to the detriment of drainage. When precipitation was reduced by more than 30%, plants relied on stored soil water to satisfy evapotranspiration suggesting 30% may be a threshold that if sustained over the long term would deplete plant available soil water. Under the third scenario, evapotranspiration and drainage decreased, whereas surface run‐off increased. Changes in root biomass measured before and 4 years after the throughfall reduction experiment were not detected among treatments. Model simulations, however, indicated gains in evapotranspiration with deeper roots under evenly reduced precipitation and seasonal precipitation redistribution scenarios but not when precipitation frequency was adjusted. Deep soil and deep rooting can provide an important buffer capacity when precipitation alone cannot satisfy the evapotranspirational demand of forests. How this buffering capacity will persist in the face of changing precipitation inputs, however, will depend less on seasonal redistribution than on the magnitude of reductions and changes in rainfall frequency.  相似文献   
5.
Soil water dynamics are central in linking and regulating natural cycles in ecohydrology, however, mathematical representation of soil water processes in models is challenging given the complexity of these interactions. To assess the impacts of soil water simulation approaches on various model outputs, the Soil and Water Assessment Tool was modified to accommodate an alternative soil water percolation method and tested at two geographically and climatically distinct, instrumented watersheds in the United States. Soil water was evaluated at the site scale via measured observations, and hydrologic and biophysical outputs were analysed at the watershed scale. Results demonstrated an improved Kling–Gupta Efficiency of up to 0.3 and a reduction in percent bias from 5 to 25% at the site scale, when soil water percolation was changed from a threshold, bucket-based approach to an alternative approach based on variable hydraulic conductivity. The primary difference between the approaches was attributed to the ability to simulate soil water content above field capacity for successive days; however, regardless of the approach, a lack of site-specific characterization of soil properties by the soils database at the site scale was found to severely limit the analysis. Differences in approach led to a regime shift in percolation from a few, high magnitude events to frequent, low magnitude events. At the watershed scale, the variable hydraulic conductivity-based approach reduced average annual percolation by 20–50 mm, directly impacting the water balance and subsequently biophysical predictions. For instance, annual denitrification increased by 14–24 kg/ha for the new approach. Overall, the study demonstrates the need for continued efforts to enhance soil water model representation for improving biophysical process simulations.  相似文献   
6.
Food safety is an important issue for the development of the national economy and society. Studying regional food supply and demand from the perspective of land resource carrying capacity can provide new references for regional resource sustainability. This study uses the data from farmer and herdsmen household questionnaires, statistical data, land use data, and other sources to construct a land resource carrying capacity (LCC) assessment framework, targeting the food supply and demand of residents in representative areas, specifically the typical grassland pastoral areas, sandy pastoral areas and agro-pastoral areas on the Xilin Gol grassland transects. The three food nutritional indicators of calories, protein and fat were selected for analyzing the balance of land resource carrying capacity. We found that: 1) Along the Xilin Gol grassland, the main local food supply showed a shift from meat and milk to grains, vegetables and fruits. 2) From north to south along the grassland transects, the calorie intake increased gradually, while the intake of protein and fat was highest in pastoral areas and lowest in agricultural areas. 3) The overall land resource carrying capacity of the Xilin Gol grassland transects was in a surplus state, but the land carrying capacity of typical grassland pastoral area was higher than the two other types of areas. This study provides an empirical reference for the sustainable development of regional food nutrition.  相似文献   
7.
Li  Wei  Li  Xiaoyan  Huang  Yongmei  Wang  Pei  Zhang  Cicheng 《地理学报(英文版)》2019,29(9):1507-1526

In many arid ecosystems, vegetation frequently occurs in high-cover patches interspersed in a matrix of low plant cover. However, theoretical explanations for shrub patch pattern dynamics along climate gradients remain unclear on a large scale. This context aimed to assess the variance of the Reaumuria soongorica patch structure along the precipitation gradient and the factors that affect patch structure formation in the middle and lower Heihe River Basin (HRB). Field investigations on vegetation patterns and heterogeneity in soil properties were conducted during 2014 and 2015. The results showed that patch height, size and plant-to-patch distance were smaller in high precipitation habitats than in low precipitation sites. Climate, soil and vegetation explained 82.5% of the variance in patch structure. Spatially, R. soongorica shifted from a clumped to a random pattern on the landscape towards the MAP gradient, and heterogeneity in the surface soil properties (the ratio of biological soil crust (BSC) to bare gravels (BG)) determined the R. soongorica population distribution pattern in the middle and lower HRB. A conceptual model, which integrated water availability and plant facilitation and competition effects, was revealed that R. soongorica changed from a flexible water use strategy in high precipitation regions to a consistent water use strategy in low precipitation areas. Our study provides a comprehensive quantification of the variance in shrub patch structure along a precipitation gradient and may improve our understanding of vegetation pattern dynamics in the Gobi Desert under future climate change.

  相似文献   
8.
Classification of fine-grained soils is typically conducted using plasticity charts. The typically used plasticity chart proposed by Casagrande was questioned by Polidori proposing different classification criterion in separating clayey and silty soils. Using natural clayey and silty soils sampled from four different coastal sites in Korea, applicability of both Casagrande’s and Polidori’s plasticity charts was evaluated. Classification results of Korean natural soils based on the Casagrande’s and Polidori’s plasticity charts did not match well with those based on the soils’ behavior reported in the previous publication. The disagreement in classification of Korean natural fine-grained soils may result from disregard of considerable silt fraction effect on plastic and liquid limits for Polidori’s chart. Consequently, revised proposal of Polidori’s plasticity chart was tentatively made for further classification of fine-grained soils suitable for Korean natural soils by accounting the effect of silt fraction on soil classification.  相似文献   
9.
大量的钻孔资料表明,平原地区及其海域沉积物中普遍有硬质粘土层的存在。硬质粘土层在工程地质、地理学研究等方面具有重要的价值,它不仅是高层建筑的持力层,而且是研究全球环境变化事件、古气候演变的良好载体。该文阐述了硬质粘土层的一般特征、成因以及在粒度、地球化学元素、年代学、沉积环境等方面的研究进展,并展望了硬质粘土层在年代、物质来源和沉积环境等方面的研究方向,认为黄河三角洲硬质粘土层研究较少,需要开展大范围的、系统深入的、多学科的宏观和微观综合分析,挖掘硬质粘土层蕴含的古环境意义和应用价值。  相似文献   
10.
叶翔  李靖  王爱军 《海洋学报》2018,40(7):79-89
滨海湿地作为人类活动和全球变化反应最为敏感的区域,其沉积记录可以反映出周边地区环境变化及人类活动信息。珠江口淇澳岛滨海湿地钻孔分析结果表明,在中全新世期间淇澳岛附近海域为河口湾环境,在风化层以上开始出现淤积,但在4 200 a BP前后受极冷气候的影响,沉积物粗化;自2 500 a BP以来,沉积环境相对稳定,在小冰期期间略有变化。沉积速率计算结果显示:淇澳岛附近海域自中全新世高海面以来的平均沉积速率为0.29 cm/a,4 160~2 500 a BP、2 500 a BP-1488年、1488-1893年、1893-1986年、1990-2007年期间的平均沉积速率分别为:0.17 cm/a、0.23 cm/a、0.35 cm/a、1.37 cm/a和5.94 cm/a,沉积速率逐渐增大,反映了珠江三角洲演化过程中沉积相与沉积环境的变化;1986-1990年期间的海堤建造极大地扰动了该钻孔上部的沉积过程,在工程施工期间共沉积了厚度约112 cm的沉积层,而在海堤建成后,沉积速率也显著增大。沉积物总有机碳、总氮和C/N值的垂向分布表明,在4 160~2 500 a BP期间受海洋环境影响较大,沉积物中有机碳以海源为主,2 500 a BP以来沉积物中碳、氮含量明显增大,C/N也相应变大,有机碳主要来源于陆源输入,但在小冰期期间海源有机碳贡献略有所增大;近百年来由于受人类活动影响显著,陆源有机碳的贡献快速增加。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号