首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   534篇
  免费   10篇
  国内免费   8篇
测绘学   3篇
大气科学   26篇
地球物理   117篇
地质学   136篇
海洋学   90篇
天文学   142篇
综合类   4篇
自然地理   34篇
  2021年   6篇
  2020年   3篇
  2019年   17篇
  2018年   8篇
  2017年   12篇
  2016年   14篇
  2015年   10篇
  2014年   17篇
  2013年   20篇
  2012年   13篇
  2011年   17篇
  2010年   18篇
  2009年   23篇
  2008年   26篇
  2007年   42篇
  2006年   23篇
  2005年   22篇
  2004年   22篇
  2003年   20篇
  2002年   21篇
  2001年   13篇
  2000年   8篇
  1999年   4篇
  1998年   6篇
  1997年   10篇
  1996年   10篇
  1995年   11篇
  1994年   3篇
  1993年   11篇
  1992年   7篇
  1991年   3篇
  1990年   3篇
  1988年   8篇
  1987年   3篇
  1986年   6篇
  1985年   9篇
  1984年   7篇
  1983年   10篇
  1982年   3篇
  1981年   7篇
  1980年   4篇
  1979年   7篇
  1978年   2篇
  1977年   3篇
  1976年   9篇
  1975年   7篇
  1973年   8篇
  1972年   5篇
  1971年   6篇
  1967年   1篇
排序方式: 共有552条查询结果,搜索用时 15 毫秒
1.
Upper Devonian carbonates of the Toc Tat Formation in the Si Phai Pass area of Dong Van District, northern Vietnam were deposited in carbonate platform, slope, and basin environments. These carbonates yield abundant conodonts indicative of the Palmatolepis nasuta, Pa. linguiformis and Pa. triangularis zones, the Frasnian–Famennian stage boundary being identified by the first occurrence of Pa. triangularis. Two positive carbon isotope excursions are recognized, the lower excursion peaking in the interval of the lower to middle Pa. nasuta Zone, whilst the upper excursion peaks just above the local Frasnian–Famennian boundary. Based on the biostratigraphy, these excursions equate to the Lower and Upper Kellwasser events. Locally, tentaculitoid taxa (Nowakia, Styliolina, Homoctenus, and Metastyliolina?) are abundant in the interval of the Pa. nasuta Zone, but show a drastic decline in abundance before the Lower Kellwasser Event, and only two taxa survived into the Famennian.  相似文献   
2.
Six major groups of trilobites from the Silurian and Devonian of Japan are evaluated for their paleobiogeographical signature. Silurian illaenids and scutelluids show four generic‐level and at least two species‐level links with the Australian segment of the Gondwana paleocontinent; encrinurids also indicate two generic‐level links with Australia and also the South China paleocontinent; whilst Devonian phacopids, and possibly proetids, suggest at least two generic‐level links with the North China paleocontinent. These different patterns may reflect the fragmentary biostratigraphical record of Japanese trilobites, but they also appear to reflect paleoenvironmental parameters associated with lithofacies, and paleoecology. Thus, Japanese assemblages of proetids and phacopids occurring in deep‐water clastic lithofacies have counterparts in similar settings in North China, and Japanese scutelluids and illaenids are strongly associated with shallow marine carbonate lithofacies that are similar to those of their occurrences in Australia. Japanese encrinurids occur in carbonate rocks indicative of shallow marine settings in the Kurosegawa Terrane, and they demonstrate a consistent paleobiogeographical affinity with Australia and South China. Larval ecology cannot be directly assessed for Japanese trilobite groups. However, proetids have consistently been shown to have planktonic protaspides, whereas illaenids, scutelluids, and encrinurids have benthic protaspides. Planktonic protaspides would have a greater propensity for distribution in ocean currents than benthic ones, and therefore may be of more limited paleobiogeographical utility. The combined data from the six different groups indicates that the complex paleobiogeographical patterns of the Japanese trilobite assemblages need to be interpreted with caution, and similarity of taxa does not necessarily denote paleogeographical proximity to other regions.  相似文献   
3.
Understanding changes in evapotranspiration during forest regrowth is essential to predict changes of stream runoff and recovery after forest cutting. Canopy interception (Ic) is an important component of evapotranspiration, however Ic changes and the impact on stream runoff during regrowth after cutting remains unclear due to limited observations. The objective of this study was to examine the effects of Ic changes on long-term stream runoff in a regrowth Japanese cedar and Japanese cypress forest following clear-cutting. This study was conducted in two 1-ha paired headwater catchments at Fukuroyamasawa Experimental Watershed in Japan. The catchments were 100% covered by Japanese coniferous plantation forest, one of which was 100% clear-cut in 1999 when the forest was 70 years old. In the treated catchment, annual runoff increased by 301 mm/year (14% of precipitation) the year following clear-cutting, and remained 185 mm/year (7.9% of precipitation) higher in the young regrowth forest for 12–14 years compared to the estimated runoff assuming no clear-cutting. The Ic change was −358 mm/year (17% of precipitation) after cutting and was −168 mm/year (6.7% of precipitation) in the 12–14 years old regrowth forest compared to the observed Ic during the pre-cutting period. Stream runoff increased in all seasons, and the Ic change was the main fraction of evapotranspiration change in all seasons throughout the observation period. These results suggest that the change in Ic accounted for most of the runoff response following forest cutting and the subsequent runoff recovery in this coniferous forest.  相似文献   
4.
In the present study, laboratory experiments were conducted to validate the applicability of a numerical model based on one-dimensional nonlinear long-wave equations. The model includes drag and inertia resistance of trees to tsunami flow and porosity between trees and a simplified forest in a wave channel. It was confirmed that the water surface elevation and flow velocity by the numerical simulations agree well with the experimental results for various forest conditions of width and tree density. Further, the numerical model was applied to prototype conditions of a coastal forest of Pandanus odoratissimus to investigate the effects of forest conditions (width and tree density) and incident tsunami conditions (period and height) on run-up height and potential tsunami force. The modeling results were represented in curve-fit equations with the aim of providing simplified formulae for designing coastal forest against tsunamis. The run-up height and potential tsunami forces calculated by the curve-fit formulae and the numerical model agreed within ± 10% error.  相似文献   
5.
Aoki  Toshiya  Katsura  Shin&#;ya  Koi  Takashi  Tanaka  Yasutaka  Yamada  Takashi 《Landslides》2022,19(8):1813-1824
Landslides - The 2018 Hokkaido Eastern Iburi Earthquake triggered numerous shallow landslides on slopes covered with thick pyroclastic-fall deposits. The landslides occurred more frequently on...  相似文献   
6.
7.
We summarize chemical characteristics of chromian spinels from ultramafic to mafic plutonic rocks (lherzolites, harzburgites, dunites, wehrlites, troctolites, olivine gabbros) with regard to three tectonic settings (mid‐ocean ridge, arc, oceanic hotspot). The chemical range of spinels is distinguishable between the three settings in terms of Cr# (= Cr/(Cr + Al) atomic ratio) and Ti content. The relationships are almost parallel with those of chromian spinels in volcanic rocks, but the Ti content is slightly lower in plutonics than in volcanics at a given tectonic environment. The Cr# of spinels in plutonic rocks is highly diverse; its ranges overlap between the three settings, but extend to higher values (up to 0.8) in arc and oceanic hotspot environments. The Ti content of spinels in plutonics increases, for a given lithology, from the arc to oceanic hotspot settings by mid‐ocean ridge on average. This chemical diversity is consistent with that of erupted magmas from the three settings. If we systematically know the chemistry of chromian spinels from a series of plutonic rocks, we can estimate their tectonic environments of formation. The spinel chemistry is especially useful in dunitic rocks, in which chromian spinel is the only discriminating mineral. Applying this, discordant dunites cutting mantle peridotites were possibly precipitated from arc‐related magmas in the Oman ophiolite, and from an intraplate tholeiite in the Lizard ophiolite, Cornwall.  相似文献   
8.
Methane and CO2 emissions from the two most active mud volcanoes in central Japan, Murono and Kamou (Tokamachi City, Niigata Basin), were measured in from both craters or vents (macro-seepage) and invisible exhalation from the soil (mini- and microseepage). Molecular and isotopic compositions of the released gases were also determined. Gas is thermogenic (δ13CCH4 from −32.9‰ to −36.2‰), likely associated with oil, and enrichments of 13C in CO2 (δ13CCO2 up to +28.3‰) and propane (δ13CC3H8 up to −8.6‰) suggest subsurface petroleum biodegradation. Gas source and post-genetic alteration processes did not change from 2004 to 2010. Methane flux ranged within the orders of magnitude of 101-104 g m−2 d−1 in macro-seeps, and up to 446 g m−2 d−1 from diffuse seepage. Positive CH4 fluxes from dry soil were widespread throughout the investigated areas. Total CH4 emission from Murono and Kamou were estimated to be at least 20 and 3.7 ton a−1, respectively, of which more than half was from invisible seepage surrounding the mud volcano vents. At the macro-seeps, CO2 fluxes were directly proportional to CH4 fluxes, and the volumetric ratios between CH4 flux and CO2 flux were similar to the compositional CH4/CO2 volume ratio. Macro-seep flux data, in addition to those of other 13 mud volcanoes, supported the hypothesis that molecular fractionation (increase of the “Bernard ratio” C1/(C2 + C3)) is inversely proportional to gas migration fluxes. The CH4 “emission factor” (total measured output divided by investigated seepage area) was similar to that derived in other mud volcanoes of the same size and activity. The updated global “emission-factor” data-set, now including 27 mud volcanoes from different countries, suggests that previous estimates of global CH4 emission from mud volcanoes may be significantly underestimated.  相似文献   
9.
Water temperature influences the distribution, abundance, and health of aquatic organisms in stream ecosystems, so understanding the impacts of climate warming on stream temperature will help guide management and restoration. This study assesses climate warming impacts on stream temperatures in California’s west-slope Sierra Nevada watersheds, and explores stream temperature modeling at the mesoscale. We used natural flow hydrology to isolate climate induced changes from those of water operations and land use changes. A 21 year time series of weekly streamflow estimates from WEAP21, a spatially explicit rainfall-runoff model were passed to RTEMP, an equilibrium temperature model, to estimate stream temperatures. Air temperature was uniformly increased by 2°C, 4°C, and 6°C as a sensitivity analysis to bracket the range of likely outcomes for stream temperatures. Other meteorological conditions, including precipitation, were unchanged from historical values. Raising air temperature affects precipitation partitioning into snowpack, runoff, and snowmelt in WEAP21, which change runoff volume and timing as well as stream temperatures. Overall, stream temperatures increased by an average of 1.6°C for each 2°C rise in air temperature, and increased most during spring and at middle elevations. Viable coldwater habitat shifted to higher elevations and will likely be reduced in California. Thermal heterogeneity existed within and between basins, with the high elevations of the southern Sierra Nevada and the Feather River watershed most resilient to climate warming. The regional equilibrium temperature modeling approach used here is well suited for climate change analysis because it incorporates mechanistic heat exchange, is not overly data or computationally intensive, and can highlight which watersheds are less vulnerable to climate warming. Understanding potential changes to stream temperatures from climate warming will affect how fish and wildlife are managed, and should be incorporated into modeling studies, restoration assessments, and licensing operations of hydropower facilities to best estimate future conditions and achieve desired outcomes.  相似文献   
10.
The inner part of the Ariake Sea is one of the most productive estuarine systems in Japan. To examine potential food items for estuarine organisms, we conducted monthly observations of the dynamics of particulate organic matter along the macrotidal Chikugo River estuary in 2005 and 2006. In the neighboring macrotidal Midori and Kuma River estuaries, comparative observations were made. High turbidity and strong vertical mixing were observed only at low salinities (<10) in the Chikugo River estuary. In contrast, the Midori and Kuma River estuaries were characterized by less turbid and less mixed waters. Concentrations of particulate organic carbon often exceeded 5?mg?l?1 in or close to the estuarine turbidity maximum (ETM) of the Chikugo River estuary. However, such high concentrations were rarely observed in the other two estuaries. The observed differences could be attributable to different hydrodynamic processes related to the different lengths of tidal reaches: 23, 8, and 6?km in the Chikugo, Midori, and Kuma Rivers, respectively. In the Chikugo River estuary, spatiotemporal changes of chlorophyll a suggested that phytoplankton occurred abundantly up- and/or downstream from the ETM especially during the warm season. In contrast, pheophytin (i.e., plant detritus) always accumulated in or close to the ETM. Carbon stable isotope ratios and carbon to nitrogen ratios indicated that the plant detritus was derived from phytoplankton and terrestrial plants. The Chikugo River estuary has a high potential to support the production of estuarine organisms through abundant plant detritus in the well-developed ETM all the year round.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号