首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4169篇
  免费   377篇
  国内免费   421篇
测绘学   51篇
大气科学   181篇
地球物理   881篇
地质学   942篇
海洋学   613篇
天文学   1735篇
综合类   112篇
自然地理   452篇
  2024年   3篇
  2023年   23篇
  2022年   66篇
  2021年   86篇
  2020年   80篇
  2019年   99篇
  2018年   82篇
  2017年   90篇
  2016年   91篇
  2015年   99篇
  2014年   128篇
  2013年   153篇
  2012年   92篇
  2011年   158篇
  2010年   144篇
  2009年   324篇
  2008年   336篇
  2007年   358篇
  2006年   373篇
  2005年   278篇
  2004年   244篇
  2003年   256篇
  2002年   206篇
  2001年   175篇
  2000年   220篇
  1999年   196篇
  1998年   177篇
  1997年   78篇
  1996年   55篇
  1995年   88篇
  1994年   50篇
  1993年   41篇
  1992年   22篇
  1991年   12篇
  1990年   21篇
  1989年   12篇
  1988年   5篇
  1987年   10篇
  1986年   5篇
  1985年   8篇
  1984年   5篇
  1983年   2篇
  1982年   7篇
  1981年   5篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
排序方式: 共有4967条查询结果,搜索用时 15 毫秒
1.
The variability of rainfall-dependent streamflow at catchment scale modulates many ecosystem processes in wet temperate forests. Runoff in small mountain catchments is characterized by a quick response to rainfall pulses which affects biogeochemical fluxes to all downstream systems. In wet-temperate climates, water erosion is the most important natural factor driving downstream soil and nutrient losses from upland ecosystems. Most hydrochemical studies have focused on water flux measurements at hourly scales, along with weekly or monthly samples for water chemistry. Here, we assessed how water and element flows from broad-leaved, evergreen forested catchments in southwestern South America, are influenced by different successional stages, quantifying runoff, sediment transport and nutrient fluxes during hourly rainfall events of different intensities. Hydrograph comparisons among different successional stages indicated that forested catchments differed in their responses to high intensity rainfall, with greater runoff in areas covered by secondary forests (SF), compared to old-growth forest cover (OG) and dense scrub vegetation (CH). Further, throughfall water was greatly nutrient enriched for all forest types. Suspended sediment loads varied between successional stages. SF catchments exported 455 kg of sediments per ha, followed by OG with 91 kg/ha and CH with 14 kg/ha, corresponding to 11 rainfall events measured from December 2013 to April 2014. Total nitrogen (TN) and phosphorus (TP) concentrations in stream water also varied with rainfall intensity. In seven rainfall events sampled during the study period, CH catchments exported less nutrients (46 kg/ha TN and 7 kg/ha TP) than SF catchments (718 kg/ha TN and 107 kg/ha TP), while OG catchments exported intermediate sediment loads (201 kg/ha TN and 23 kg/ha TP). Further, we found significant effects of successional stage attributes (vegetation structure and soil physical properties) and catchment morphometry on runoff and sediment concentrations, and greater nutrients retention in OG and CH catchments. We conclude that in these southern hemisphere, broad-leaved evergreen temperate forests, hydrological processes are driven by multiple interacting phenomena, including climate, vegetation, soils, topography, and disturbance history.  相似文献   
2.
The acquisition of spatial-temporal information of frozen soil is fundamental for the study of frozen soil dynamics and its feedback to climate change in cold regions. With advancement of remote sensing and better understanding of frozen soil dynamics, discrimination of freeze and thaw status of surface soil based on passive microwave remote sensing and numerical simulation of frozen soil processes under water and heat transfer principles provides valuable means for regional and global frozen soil dynamic monitoring and systematic spatial-temporal responses to global change. However, as an important data source of frozen soil processes, remotely sensed information has not yet been fully utilized in the numerical simulation of frozen soil processes. Although great progress has been made in remote sensing and frozen soil physics, yet few frozen soil research has been done on the application of remotely sensed information in association with the numerical model for frozen soil process studies. In the present study, a distributed numerical model for frozen soil dynamic studies based on coupled water-heat transferring theory in association with remotely sensed frozen soil datasets was developed. In order to reduce the uncertainty of the simulation, the remotely sensed frozen soil information was used to monitor and modify relevant parameters in the process of model simulation. The remotely sensed information and numerically simulated spatial-temporal frozen soil processes were validated by in-situ field observations in cold regions near the town of Naqu on the East-Central Tibetan Plateau. The results suggest that the overall accuracy of the algorithm for discriminating freeze and thaw status of surface soil based on passive microwave remote sensing was more than 95%. These results provided an accurate initial freeze and thaw status of surface soil for coupling and calibrating the numerical model of this study. The numerically simulated frozen soil processes demonstrated good performance of the distributed numerical model based on the coupled water-heat transferring theory. The relatively larger uncertainties of the numerical model were found in alternating periods between freezing and thawing of surface soil. The average accuracy increased by about 5% after integrating remotely sensed information on the surface soil. The simulation accuracy was significantly improved, especially in transition periods between freezing and thawing of the surface soil.  相似文献   
3.
An extensive experimental investigation on four SWATH hull forms has been conducted in calm water and in regular waves at University of Naples Federico II. Calm water tests have been analyzed in the range of Froude number FrT from 0.1 to 0.6. For all four SWATH configurations at the speed, corresponding to FrT 0.32, the behaviour in regular waves has been tested. The results of heave, pitch and vertical accelerations are presented in nondimensional form as RAO. For the “most promising” SWATH #4 configuration, a set of stabilizing fins have been designed and an active stabilization system has been developed. The developed SWATH#5 has been tested in calm water on three displacements in the range of FrT from 0.1 to 0.65. The dynamic wetted surface has been identified and the residual resistance coefficient CR as well as RT/Δ are reported. Seakeeping tests have been performed in regular head sea and in head and following irregular sea at FrT = 0.50. The conditions for the occurrence of dynamic longitudinal instabilities have been identified. The results allows to comment the effect of slenderness of struts and SWATH’s immersed bodies on resistance and seakeeping and concerns the applicability of SWATH concept to small craft.  相似文献   
4.
周洋  吴艳霞  罗棋  李查玮 《地震工程学报》2020,42(2):460-467,528
为研究三峡井网表层岩土渗透对井水位降雨的影响,采取井区表层岩土垂向渗透性测试方法试验,测得表层岩土垂向渗透性,并建立数学模型,用于降雨渗入补给分析。在此模型基础上,通过三峡井网8口井水位、气象三要素的对比观测资料对井水位日动态、月动态、年动态的影响进行精准分析与验证。结果表明:这种影响的特征是相当复杂的,同一个降雨过程在不同井上产生的影响特征不同,这一方面可能与各井的水文地质条件不同有关,另一方面可能还与各井点的降雨过程的差异也有关。  相似文献   
5.
南海是西太平洋最大的边缘海, 通过一系列的海峡与西太平洋和印度洋相联通, 其不同时空尺度的海洋环流动力过程及其生态环境效应是南海区域海洋学研究的重要内容。自20世纪50年代末全国第一次海洋普查开始, 我国对海洋调查的支持力度不断加大, 以科学考察船为代表的海洋科学观测平台建设不断加强; 进入新千年以来, 国内海洋科考船依托的各主要研究所和院校本着开放的理念, 先后组织多单位联合进行海上观测。尤其是最近10年, 国家自然科学基金委员会支持实施了船时共享航次计划, 进一步促进了国内海洋界的交流和合作, 南海区域海洋学的相关研究取得了很多重要的成果。从多尺度环流动力学的角度出发, 本文简要回顾了南海海洋观测的发展历程, 并初步总结了近些年来南海关键科学问题的研究进展, 包括南海和西太平洋的水体交换过程、南海中小尺度过程、多尺度相互作用及其生态环境效应等; 并且在现有的研究基础上, 对未来南海的观测和科学问题提出若干思考与展望。  相似文献   
6.
全球海平面变化对古地理、古生物、古气候演化以及能源矿产分布具有重要的控制作用。然而,目前学界对深时海平面变化的驱动机制尚不清楚,部分归因于缺乏高精度全球海平面变化的恢复。文章回顾了全球海平面变化研究的起始与发展过程,归纳出五种类型的深时海平面变化重建方法和技术,即地层学、沉积学、洋盆动力学、同位素地球化学方法和大数据技术。并总结了上述研究方法的原理、优势和不足,并以白垩纪全球海平面重建为实例,讨论了当前深时全球海平面重建的难点和争议点,并对未来深时全球海平面变化重建进行了展望。  相似文献   
7.
高寒区植被变化一直是气候和生态学领域关注的热点问题。本研究基于MODIS NDVI数据计算的植被覆盖度数据和高分辨率气象数据,分析了青海湖流域2001-2017年植被覆盖度分布格局及动态变化,探讨了其对气候变化、人类活动和冻土退化的响应。结果表明:① 近十几年青海湖流域植被覆盖度整体表现为增加趋势,不同植被类型增幅存在差异性,草地增幅最大,达到6.1%/10a,其它植被类型增幅在2%~3%/10a之间;② 流域局部地区仍存在植被退化现象,研究期植被退化面积表现为先增加后减小的变化趋势。2006-2011年重度退化区集中在青海湖东岸,2011-2017年重度退化区集中在流域的西北部,这些区域是青海湖流域荒漠分布区,植被覆盖度较低,是今后生态恢复需重点关注的区域;③ 气候变化是流域植被覆盖度变化的主导因素,气候变化对青海湖流域主要植被类型覆盖度变化的贡献率为84.21%,对草原、草甸和灌丛植被覆盖度变化的贡献率分别为81.84%、87.47%和75.96%;④ 人类活动对流域主要植被类型覆盖度变化的贡献率为15.79%,对草原、草甸和灌丛植被覆盖度变化的贡献率分别为18.16%、12.53%和24.04%,环青海湖地区人类活动对植被恢复有促进效应,在青海湖流域北部部分地区人类活动的破坏力度仍大于建设力度;⑤ 冻土退化对青海湖流域草甸和灌丛植被覆盖度变化影响很小,主要影响草原植被覆盖度变化,冻土退化造成草原植被覆盖度增长速率减小了1.2%/10a。  相似文献   
8.
This work presents a canonical study on a wedge entering water near a single piece of ice using computational-fluid-dynamics (CFD) and a Wagner-type theoretical model with corrections for non-linear effects. Calculations for a series of conditions with ice of different sizes and locations relative to the wedge are conducted. The hydrodynamic force due to impact, the pressure distribution on the wedge surface, and the pile-up phenomenon are examined to study the role of ice in the impact process. The theoretical model is shown to be accurate and can serve as a useful method to assess slamming loads under the influence of ice. It is shown that even for the case of a small piece of ice, the slamming force on the wedge can increase by 30%.  相似文献   
9.
This field and laboratory study examines whether regularly patterned biofilms on present-day intertidal flats are equivalent to microbially induced bedforms found in geological records dating back to the onset of life on Earth. Algal mats of filamentous Vaucheria species, functionally similar to microbial biofilms, cover the topographic highs of regularly spaced ridge–runnel bedforms. As regular patterning is typically associated with self-organization processes, indicators of self-organization are tested and found to support this hypothesis. The measurements suggest that biofilm-induced sediment trapping and biostabilization enhance bedform relief, strength and multi-year persistence. This demonstrates the importance of primitive organisms for sedimentary landscape development. Algal-covered ridges consist of wavy-crinkly laminated sedimentary deposits that resemble the layered structure of fossil stromatolites and microbially induced sedimentary structures. In addition to layering, both the morphological pattern and the suggested formation mechanism of the recent bedforms are strikingly similar to microbialite strata found in rock records from the Precambrian onwards. This implies that self-organization was an important morphological process in times when biofilms were the predominant sessile ecosystem. These findings furthermore emphasize that self-organization dynamics, such as critical transitions invoking ecosystem emergence or collapse, might have been captured in fossil microbialites, influencing their laminae. This notion may be important for paleoenvironmental reconstructions based on such strata. © 2019 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   
10.
In this paper, a literature‐based compilation of the timing and history of salt tectonics in the Southern Permian Basin (Central Europe) is presented. The tectono‐stratigraphic evolution of the Southern Permian Basin is influenced by salt movement and the structural development of various types of salt structures. The compilation presented here was used to characterize the following syndepositional growth stages of the salt structures: (a) “phase of initiation”; (b) phase of fastest growth (“main activity”); and (c) phase of burial’. We have also mapped the spatial pattern of potential mechanisms that triggered the initiation of salt structures over the area studied and summarized them for distinct regions (sub‐basins, platforms, etc.). The data base compiled and the set of maps produced from it provide a detailed overview of the spatial and temporal distribution of salt tectonic activity enabling the correlation of tectonic phases between specific regions of the entire Southern Permian Basin. Accordingly, salt movements were initiated in deeply subsided graben structures and fault zones during the Early and Middle Triassic. In these areas, salt structures reached their phase of main activity already during the Late Triassic or the Jurassic and were mostly buried during the Early Cretaceous. Salt structures in less subsided sub‐basins and platform regions of the Southern Permian Basin mostly started to grow during the Late Triassic. The subsequent phase of main activity of these salt structures took place from the Late Cretaceous to the Cenozoic. The analysis of the trigger mechanisms revealed that most salt structures were initiated by large‐offset normal faults in the sub‐salt basement in the large graben structures and minor normal faulting associated with thin‐skinned extension in the less subsided basin parts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号