首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2533篇
  免费   499篇
  国内免费   747篇
测绘学   124篇
大气科学   1738篇
地球物理   275篇
地质学   182篇
海洋学   163篇
天文学   894篇
综合类   132篇
自然地理   271篇
  2024年   8篇
  2023年   43篇
  2022年   87篇
  2021年   85篇
  2020年   110篇
  2019年   104篇
  2018年   100篇
  2017年   92篇
  2016年   100篇
  2015年   140篇
  2014年   217篇
  2013年   186篇
  2012年   196篇
  2011年   141篇
  2010年   147篇
  2009年   174篇
  2008年   158篇
  2007年   228篇
  2006年   191篇
  2005年   175篇
  2004年   164篇
  2003年   165篇
  2002年   131篇
  2001年   109篇
  2000年   99篇
  1999年   100篇
  1998年   115篇
  1997年   29篇
  1996年   24篇
  1995年   30篇
  1994年   30篇
  1993年   22篇
  1992年   16篇
  1991年   17篇
  1990年   14篇
  1989年   5篇
  1988年   3篇
  1987年   7篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1980年   3篇
  1976年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有3779条查询结果,搜索用时 15 毫秒
1.
Numerous efforts have been made to understand stemflow dynamics under different types of vegetation at the inter-event scale, but few studies have explored the stemflow characteristics and corresponding influencing factors at the intra-event scale. An in-depth investigation of the inter- and intra-event dynamics of stemflow is important for understanding the ecohydrological processes in forest ecosystems. In this study, stemflow volume (FV), stemflow funnelling ratio (FR), and stemflow ratio (F%) from Quercus acutissima and Broussonetia papyrifera trees were measured at both inter- and intra-event scales in a subtropical deciduous forest, and the driving factors, including tree species and meteorological factors were further explored. Specifically, the FV, FR and F% of Q. acutissima (52.3 L, 47.2, 9.6%) were lower than those of B. papyrifera (85.1 L, 91.2, 12.4%). The effect of tree species on FV and F% was more obvious under low intensity rainfall types. At the inter-event scale, FV had a strong positive linear correlation with rainfall amount (GP) and event duration (DE) for both tree species, whereas FR and F% had a positive logarithmic correlation with GP and DE only under high-intensity, short-duration rainfall type. FR and F% were mainly affected by wind speed and the maximum 30-min rainfall intensity under low-intensity, long-duration rainfall type. At the intra-event scale, for both tree species, the mean lag time between the start of rainfall and stemflow was the shortest under high-intensity, short-duration rainfall type, while the mean duration and amount of stemflow after rain cessation were the greatest under high-amount, long-duration rainfall type. The relationship between stemflow intensity and rainfall intensity at the 5-min interval scale also depended greatly on rainfall type. These findings can help clarify stemflow dynamics and driving factors at both inter- and intra-event scales, and also provide abundant data and parameters for ecohydrological simulations in subtropical forests.  相似文献   
2.
为探明气候变化下干旱半干旱地区湿草甸参考作物蒸散发(ET0)影响因子,使用FAO 56 P-M模型对科尔沁湿草甸ET0进行模拟,利用涡度相关系统对模型的适用性进行评价,并通过通径分析及指标敏感性分析对ET0的影响因子进行辨识。结果表明:(1)小时尺度模拟精度最高,日尺度次之,月尺度较差,小时尺度上晴、阴、雨3种天气条件下模拟效果不同,晴天最优,阴雨天较差。(2)ET0年内变化呈单峰曲线状,生长季明显高于非生长季,集中在3—10月,占全年89.79%。生长季典型晴天ET0逐小时分布特征遵循倒“U”单峰型变化规律。(3)通径分析结果显示,对ET0的通径系数以及对回归方程估测可靠程度E的总贡献均表现为VPD(饱和水汽压差) > Tmin(最低气温) > Rn(冠层表面净辐射)>u2(2 m高度风速),即VPD为影响ET0最重要的因子;指标敏感性分析中,在去除VPD后引起的E变化最大,说明ET0VPD的变化最为敏感,其次为u2TminRn。  相似文献   
3.
Stable water isotopes δ18O and δ2H are used to investigate precipitation trends and storm dynamics to advance knowledge of precipitation patterns in a warming world. Herein, δ18O and δ2H were used to determine the relationship between extratropical cyclonic precipitation and local meteoric water lines (LMWLs) in the eastern Ohio Valley and the eastern United States. Precipitation volume weighted and unweighted central Ohio LMWLs, created with samples collected during 2012–2018, showed that temperature had the greatest effect on precipitation isotopic composition. HYSPLIT back trajectory modelling showed that precipitation was primarily derived from a mid-continental moisture source. Remnants of major hurricanes were collected as extratropical precipitation during the 2012–2018 sampling period in central Ohio. Extratropical precipitation samples were not significantly different from the samples that created the central Ohio LMWL. Six additional LMWLs were derived from United States Geological Survey (USGS) Atmospheric Integrated Research Monitoring Network (AIRMoN) samples collected in Pennsylvania, Delaware, Tennessee, Vermont, New Hampshire, and Oxford, Ohio. Meteoric water lines describing published samples from Superstorm Sandy, plotted with these AIRMoN LMWLs, showed isotopic composition of Superstorm Sandy precipitation was commonly more depleted than the average isotopic composition at the mid-latitude locations. Meteoric water lines describing the Superstorm Sandy precipitation were not significantly different in slope from LMWLs generated within 300 km of the USGS AIRMoN site. This finding, which was observed across the eastern Ohio Valley and eastern United States, demonstrated a consistent precipitation δ2H–δ18O relationship for extratropical cyclonic and non-cyclonic events. This work also facilitates the analysis of storm development based on the relationship between extratropical event signature and the LMWL. Analysis of extratropical precipitation in relation to LMWLs along storm tracks allows for stronger development of precipitation models and understanding of which climatic and atmospheric factors determine the isotopic composition of precipitation.  相似文献   
4.
Monitoring of the fluctuations of groundwater storage is particularly important in arid and semi-arid regions where water scarcity brings about various challenges. Remote sensing data and techniques play a preponderant role in developing solutions to environmental problems. The launch of Gravity Recovery and Climate Experiment (GRACE) satellites has eased the remote monitoring and evaluation of groundwater resources with an unprecedented precision over large scales. Within the scope of the current study, the latest release (RL06) of GRACE mass concentrations (Mascons) from Jet Propulsion Laboratory (JPL) dataset as well as Global Land Data Assimilation System (GLDAS) models of Noah and Catchment Land Surface Model (CLSM) were used to provide Groundwater Storage Anomalies (GWSA) over Turkey. The temporal interactions of the estimated GWSA with the climatic variables of precipitation and temperature (derived from the reanalysis datasets of CHELSA [Climatologies at High resolution for the Earth's Land Surface Areas] and FLDAS [the Famine Early Warning Systems Network Land Data Assimilation System], respectively) were investigated statistically. The results suggest that there is a descending trend (from 2003 to 2016) for Terrestrial Water Storage Anomalies (TWSA) and GWSA over Turkey with a total loss of 11 and 6 cm of water, respectively. The statistical analysis results also indicate that the monthly variations of GWSA over Turkey are highly correlated with precipitation and temperature at 2-month lag. The analysis of the climatology (long-term) values of monthly GWSA, precipitation and temperature also revealed high agreement between the variables.  相似文献   
5.
FY-3D/MERSI-II全球火点监测产品及其应用   总被引:1,自引:0,他引:1  
郑伟  陈洁  闫华  刘诚  唐世浩 《遥感学报》2020,24(5):521-530
FY-3D/MERSI-II全球火点监测产品主要包括全球范围内的火点位置、亚像元火点面积和火点强度等信息,可用于实时监测全球范围的森林草原火灾、秸秆焚烧等生物质燃烧状况。火点判识算法主要根据中红外通道对高温热源的敏感特性,即含有火点的中红外通道像元辐亮度和亮温较远红外通道的辐亮度和亮温偏高,同时较周边非火点的中红外像元偏高,建立合适的阈值可探测含有火点的像元。亚像元火点面积估算主要使用中红外单通道估算,根据亚像元火点面积估算结果对火点强度进行分级,不同的级别表示不同程度的火点辐射强度。基于全球火点自动判识结果,每日生成0.01°分辨率的卫星遥感日全球火点产品,每月生产0.25°×0.25°格点的全球月火点密度图。在利用FY-3D/MERSI-II火点产品开展的全球火点监测应用中,对多起全球重大野火事件进行了监测,为防灾减灾、全球气候变化研究、生态环境保护等方面提供卫星遥感信息支持。  相似文献   
6.
AST3-2 (the second Antarctic Survey Telescope) is located in Antarctic Dome A, the loftiest ice dome on the Antarctic Plateau. It produces a huge amount of observational data which require a more efficient data reduction program to be developed. Also the data transmission in Antarctica is much difficult, thus it is necessary to perform data reduction and detect variable and transient sources remotely and automatically in Antarctica, but this attempt is restricted by the unsatisfactory performance of the low power consumption computer in Antarctica. For realizing this purpose, to develop a new method based on the existing image subtraction method and random forest algorithm, taking the AST3-2 2016 dataset as the test sample, becomes an alternative choice. This method performs image subtraction on the dataset, then applies the principle component analysis to extract the features of residual images. Random forest is used as a machine learning classifier, and in the test a recall rate of 97% is resulted for the positive sample. Our work has verified the feasibility and accuracy of this method, and finally found out a batch of candidates for variable stars in the AST3-2 2016 dataset.  相似文献   
7.
基于内蒙古磴口荒漠生态系统国家定位观测研究站监测数据,分析2014年1—12月不同土层的地温数据及同期气象数据,进而阐明乌兰布和沙漠东北缘地温变化特征。结果表明:(1)乌兰布和沙漠地温及气温具有显著的日变化特征,气温最高值与最低值出现时刻相对巴丹吉林沙漠提前2 h,相对东部地区滞后1 h;地温与气温季节变化特征一致,各季节地温最值出现时刻相对气温滞后1 h;(2)地温变化速率随着土壤深度的增加而减小,在土壤深度达到70 cm以后,地温全年在0℃以上;低于0℃的5 cm地温持续时间约为4个月;(3)地温与空气温度、太阳辐射变化趋势一致,地温相对太阳辐射及气温明显滞后。相关分析与逐步回归表明,对地温变化起决定作用的环境因子为空气温度、蒸发量、太阳总辐射、风速、空气相对湿度、降水。  相似文献   
8.
Little is known about the spatial and temporal variability of peat erosion nor some of its topographic and weather-related drivers. We present field and laboratory observations of peat erosion using Structure-from-Motion (SfM) photogrammetry. Over a 12 month period, 11 repeated SfM surveys were conducted on four geomorphological sites of 18–28 m2 (peat hagg, gully wall, riparian area and gully head) in a blanket peatland in northern England. A net topographic change of –14 to +30 mm yr–1 for the four sites was observed during the whole monitoring period. Cold conditions in the winter of 2016 resulted in highly variable volume change (net surface topographic rise first and lowering afterwards) via freeze–thaw processes. Long periods of dry conditions in the summer of 2017 led to desiccation and drying and cracking of the peat surface and a corresponding surface lowering. Topographic changes were mainly observed over short-term intervals when intense rainfall, flow wash, needle-ice production or surface desiccation was observed. In the laboratory, we applied rainfall simulations on peat blocks and compared the peat losses quantified by traditional sediment flux measurements with SfM derived topographic data. The magnitude of topographic change determined by SfM (mean value: 0.7 mm, SD: 4.3 mm) was very different to the areal average determined by the sediment yield from the blocks (mean value: –0.1 mm, SD: 0.1 mm). Topographic controls on spatial patterns of topographic change were illustrated from both field and laboratory surveys. Roughness was positively correlated to positive topographic change and was negatively correlated to negative topographic change at field plot scale and laboratory macroscale. Overall, the importance of event-scale change and the direct relationship between surface roughness and the rate of topographic change are important characteristics which we suggest are generalizable to other environments. © 2018 John Wiley & Sons, Ltd.  相似文献   
9.
最小二乘估计和部分变量误差模型的总体最小二乘估计不具备抵御粗差的能力。鉴于粗差可能同时出现在灰色白化微分方程的观测值和系数矩阵中,本文提出基于IGGⅢ抗差方案的部分变量总体最小二乘稳健估计。结合仿真数据和高铁路基观测数据,系统地比较稳健最小二乘、部分变量总体最小二乘、本文算法参数估计结果和算法稳定性。结果表明,本文算法预测精度高,可以应用到高铁路基沉降预测中。  相似文献   
10.
The Jalovecký Creek catchment, Slovakia (area 22.2 km2, mean elevation 1500 m a.s.l.), is likely the last big valley complex in the Carpathian Mountains, in which the hydrological cycle is still governed by natural processes. Hydrological research is conducted there since the end of the 1980s. The overall mission of the research is to increase the knowledge about the hydrological cycle in the highest part of the Carpathians. The research agenda, briefly introduced in the first part of this article, is focused on water balance, snow accumulation and melt and runoff formation. Recent analysis of precipitation, discharge, snow cover and isotopic data from period 1989–2018 indicates that hydrological cycle has become more dynamic since 2014. Although several indicators suggest that it could be related to the cold part of the year, direct links with snow storage and the contribution of snowmelt water to catchment runoff were not confirmed. The second part of the article is therefore focused on an analysis of daily cycles in streamflow in March to June 1988–2018 to obtain a deeper insight into the snowmelt process. We describe characteristics of the cycles and examine their variability over the study period. The results indicate that less snow at the lowest elevations (800–1150 m a.s.l.) since 2009 could have influenced the cessation of the cycles in June since 2010. The possible role of the decreased amount of snow at the lowest elevations in changes in runoff characteristics is also suggested by an increase in time lags between maximum discharges during the events and maximum air temperatures preceding discharge maxima measured near the catchment outlet (at 750 m a.s.l.) in spring 2018 compared to springs with a similar number of streamflow cycles in the years 1988, 2000 and 2009. Wavelet analysis did not indicate changes in global power spectra in hourly discharge and air temperature data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号