首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   73篇
  免费   0篇
测绘学   1篇
大气科学   1篇
地球物理   7篇
地质学   5篇
海洋学   3篇
天文学   48篇
自然地理   8篇
  2020年   1篇
  2018年   3篇
  2017年   1篇
  2014年   1篇
  2012年   1篇
  2010年   5篇
  2009年   2篇
  2008年   2篇
  2006年   3篇
  2005年   7篇
  2004年   15篇
  2003年   3篇
  2002年   11篇
  2001年   5篇
  2000年   1篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1993年   1篇
  1989年   1篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1978年   1篇
  1945年   1篇
排序方式: 共有73条查询结果,搜索用时 31 毫秒
1.
2.
We have investigated the effect of Fe on the stabilities of carbonate (carb) in lherzolite assemblages by determining the partitioning of Fe and Mg between silicate (olivine; ol) and carbonates (magnesite, dolomite, magnesian calcite) at high pressures and temperatures. Fe enters olivine preferentially relative to magnesite and ordered dolomite, but Fe and Mg partition almost equally between disordered calcic carbonate and olivine. Measurement of K d (X Fe carb X Mg ol /X Fe ol X Mg carb ) as a function of Fe/ Mg ratio indicates that Fe–Mg carbonates deviate only slightly from ideality. Using the regular solution parameter for olivine W FeMg ol of 3.7±0.8 kJ/mol (Wiser and Wood 1991) we obtain for (FeMg)CO3 a W FeMg carb of 3.05±1.50 kJ/mol. The effect of Ca–Mg–Fe disordering is to raise K d substantially enabling us to calculate W CaMg carb -W CaFe carb of 5.3±2.2 kJ/mol. The activity-composition relationships and partitioning data have been used to calculate the effect of Fe/Mg ratio on mantle decarbonation and exchange reactions. We find that carbonate (dolomite and magnesian calcite) is stable to slightly lower pressures (by 1 kbar) in mantle lherzolitic assemblages than in the CaO–MgO–SiO2(CMS)–CO2 system. The high pressure breakdown of dolomite + orthopyroxene to magnesite + clinopyroxene is displaced to higher pressures (by 2 kbar) in natural compositions relative to CMS. CO2. We also find a stability field of magnesian calcite in lherzolite at 15–25 kbar and 750–1000°C.  相似文献   
3.
ABSTRACT

Urban areas presently consume around 75% of global primary energy supply, which is expected to significantly increase in the future due to urban growth. Having sustainable, universal energy access is a pressing challenge for most parts of the globe. Understanding urban energy consumption patterns may help to address the challenges to urban sustainability and energy security. However, urban energy analyses are severely limited by the lack of urban energy data. Such datasets are virtually non-existent for the developing countries. As per current projections, most of the new urban growth is bound to occur in these data-starved regions. Hence, there is an urgent need of research methods for monitoring and quantifying urban energy utilization patterns. Here, we apply a data-driven approach to characterize urban settlements based on their formality, which is then used to assess intra-urban urban energy consumption in Johannesburg, South Africa; Sana’a, Yemen; and Ndola, Zambia. Electricity is the fastest growing energy fuel. By analyzing the relationship between the settlement types and the corresponding nighttime light emission, a proxy of electricity consumption, we assess the differential electricity consumption patterns. Our study presents a simple and scalable solution to fill the present data void to understand intra-city electricity consumption patterns.  相似文献   
4.
5.
Several of the icy satellites of Saturn show the spectroscopic signature of the asymmetric stretching mode of C-O in carbon dioxide (CO2) at or near the nominal solid-phase laboratory wavelength of 4.2675 μm (2343.3 cm−1), discovered with the Visible-Infrared Mapping Spectrometer (VIMS) on the Cassini spacecraft. We report here on an analysis of the variation in wavelength and width of the CO2 absorption band in the spectra of Phoebe, Iapetus, Hyperion, and Dione. Comparisons are made to laboratory spectra of pure CO2, CO2 clathrates, ternary mixtures of CO2 with other volatiles, implanted and adsorbed CO2 in non-volatile materials, and ab initio theoretical calculations of CO2 * nH2O. At the wavelength resolution of VIMS, the CO2 on Phoebe is indistinguishable from pure CO2 ice (each molecule’s nearby neighbors are also CO2) or type II clathrate of CO2 in H2O. In contrast, the CO2 band on Iapetus, Hyperion, and Dione is shifted to shorter wavelengths (typically ∼4.255 μm (∼2350.2 cm−1)) and broadened. These wavelengths are characteristic of complexes of CO2 with different near-neighbor molecules that are encountered in other volatile mixtures such as with H2O and CH3OH, and non-volatile host materials like silicates, some clays, and zeolites. We suggest that Phoebe’s CO2 is native to the body as part of the initial inventory of condensates and now exposed on the surface, while CO2 on the other three satellites results at least in part from particle or UV irradiation of native H2O plus a source of C, implantation or accretion from external sources, or redistribution of native CO2 from the interior.The analysis presented here depends on an accurate VIMS wavelength scale. In preparation for this work, the baseline wavelength calibration for the Cassini VIMS was found to be distorted around 4.3 μm, apparently as a consequence of telluric CO2 gas absorption in the pre-launch calibration. The effect can be reproduced by convolving a sequence of model detector response profiles with a deep atmospheric CO2 absorption profile, producing distorted detector profile shapes and shifted central positions. In a laboratory blackbody spectrum used for radiance calibration, close examination of the CO2 absorption profile shows a similar deviation from that expected from a model. These modeled effects appear to be sufficient to explain the distortion in the existing wavelength calibration now in use. A modification to the wavelength calibration for 13 adjacent bands is provided. The affected channels span about 0.2 μm centered on 4.28 μm. The maximum wavelength change is about 10 nm toward longer wavelength. This adjustment has implications for interpretation of some of the spectral features observed in the affected wavelength interval, such as from CO2, as discussed in this paper.  相似文献   
6.
7.
8.
We investigate the dependence of the strength of galaxy clustering on intrinsic luminosity using the Anglo-Australian two degree field galaxy redshift survey (2dFGRS). The 2dFGRS is over an order of magnitude larger than previous redshift surveys used to address this issue. We measure the projected two-point correlation function of galaxies in a series of volume-limited samples. The projected correlation function is free from any distortion of the clustering pattern induced by peculiar motions and is well described by a power law in pair separation over the range     . The clustering of     galaxies in real space is well-fitted by a correlation length     and power-law slope     . The clustering amplitude increases slowly with absolute magnitude for galaxies fainter than M *, but rises more strongly at higher luminosities. At low luminosities, our results agree with measurements from the Southern Sky Redshift Survey 2 by Benoist et al. However, we find a weaker dependence of clustering strength on luminosity at the highest luminosities. The correlation function amplitude increases by a factor of 4.0 between     and −22.5, and the most luminous galaxies are 3.0 times more strongly clustered than L * galaxies. The power-law slope of the correlation function shows remarkably little variation for samples spanning a factor of 20 in luminosity. Our measurements are in very good agreement with the predictions of the hierarchical galaxy formation models of Benson et al.  相似文献   
9.
Abstract— The Martian meteorite Yamato (Y‐) 980459 is an olivine‐phyric shergottite. It has a very primitive character and may be a primary melt of the Martian mantle. We have conducted crystallization experiments on a synthetic Y‐980459 composition at Martian upper mantle conditions in order to test the primary mantle melt hypothesis. Results of these experiments indicate that the cores of the olivine megacrysts in Y‐980459 are in equilibrium with a melt of bulk rock composition, suggesting that these megacrysts are in fact phenocrysts that grew from a magma of the bulk rock composition. Multiple saturation of the melt with olivine and a low‐calcium pyroxene occurs at approximately 12 ± 0.5 kbar and 1540 ± 10°C, suggesting that the meteorite represents a primary melt that separated from its mantle source at a depth of ?100 km. Several lines of evidence suggest that the Y‐980459 source underwent extensive melting prior to and/or during the magmatic event that produced the Y‐980459 parent magma. When factored into convective models of the Martian interior, the high temperature indicated for the upper Martian mantle and possibly high melt fraction for the Y‐980459 magmatic event suggests a significantly higher temperature at the core‐mantle boundary than previously estimated.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号