首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   155篇
  免费   6篇
测绘学   11篇
大气科学   7篇
地球物理   34篇
地质学   50篇
海洋学   5篇
天文学   47篇
综合类   1篇
自然地理   6篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   3篇
  2018年   9篇
  2017年   7篇
  2016年   17篇
  2015年   9篇
  2014年   10篇
  2013年   13篇
  2012年   7篇
  2011年   9篇
  2010年   3篇
  2009年   8篇
  2008年   9篇
  2007年   13篇
  2006年   8篇
  2005年   4篇
  2004年   4篇
  2003年   7篇
  2002年   5篇
  2001年   2篇
  2000年   3篇
  1999年   2篇
  1998年   2篇
  1997年   2篇
  1989年   1篇
排序方式: 共有161条查询结果,搜索用时 31 毫秒
1.
In scientific communication, ambiguities in term usage can go unnoticed due not only to the distance between reader and writer but also to the existence of highly specialized scientific subcommunities. This commentary therefore aims at raising awareness about the use of terms that have different meanings within different hydrological subcommunities such as field hydrology, hydrological modelling, or statistical hydrology. To do so, we discuss the use of the following commonly used hydrological terms: sample, runoff, discharge, and streamflow. We performed three types of analyses to provide evidence of term usage and understanding, including both qualitative and quantitative approaches: a drawing exercise, a survey, and a literature corpus analysis. These analyses allow for a comparison of spontaneous definitions and the actual use of these terms in scientific publications. Our various information sources revealed that the dialogue between hydrologists within and across subdisciplines is substantially influenced by personal conceptualizations of terms that are not always shared across conversational partners. The terms discussed and illustrated in this commentary have to be seen as a small sample used to demonstrate the need for a thoughtful use of hydrological terms when communicating research, not only to a general audience but even across subdisciplines within hydrology.  相似文献   
2.
Dimensional stones with a black color occupy a prominent place on the international market. Uruguayan dolerite dikes of andesitic and andesitic–basaltic composition are mined for commercial blocks of black dimensional stones. A total of 16 dikes of both compositions were studied and samples collected for geochemical and petrographical analysis. Color measurements were performed on different black dimensional stones in order to compare them with the Uruguayan dolerites. Samples of the two commercial varieties (Absolute Black and Moderate Black) were obtained for petrophysical analysis (e.g. density, porosity, uniaxial compressive strength, tensile strength, etc.). Detailed structural analyses were performed in several quarries. Geochemistry and petrography determines the intensity of the black color. The Uruguayan dolerite Absolute Black is the darkest black dimensional stone analyzed in this study. The petrophysical properties of Uruguayan dolerites make them one of the highest quality black dimensional stones. Structural analyses show that five joint sets have been recognized: two sub-vertical joints, one horizontal and two diagonal. These joint sets are one of the most important factors that control the deposits, since they control the block size distribution and the amount of waste material.  相似文献   
3.
4.
The Holocene fire regime is thought to have had a key role in deforestation and shrubland expansion in Galicia (NW Spain) but the contribution of past societies to vegetation burning remains poorly understood. This may be, in part, due to the fact that detailed fire records from areas in close proximity to archaeological sites are scarce. To fill this gap, we performed charcoal analysis in five colluvial soils from an archaeological area (Campo Lameiro) and compared the results to earlier studies from this area and palaeo-ecological literature from NW Spain. This analysis allowed for the reconstruction of the vegetation and fire dynamics in the area during the last ca 11 000 yrs. In the Early Holocene, Fabaceae and Betula sp. were dominant in the charcoal record. Quercus sp. started to replace these species around 10 000 cal BP, forming a deciduous forest that prevailed during the Holocene Thermal Maximum until ~5500 cal BP. Following that, several cycles of potentially fire-induced forest regression with subsequent incomplete recovery eventually led to the formation of an open landscape dominated by shrubs (Erica sp. and Fabaceae). Major episodes of forest regression were (1) ~5500–5000 cal BP, which marks the mid-Holocene cooling after the Holocene Thermal Maximum, but also the period during which agropastoral activities in NW Spain became widespread, and (2) ~2000–1500 cal BP, which corresponds roughly to the end of the Roman Warm Period and the transition from the Roman to the Germanic period. The low degree of chronological precision, which is inherent in fire history reconstructions from colluvial soils, made it impossible to distinguish climatic from human-induced fires. Nonetheless, the abundance of synanthropic pollen indicators (e.g. Plantago lanceolata and Urtica dioica) since at least ~6000 cal BP strongly suggests that humans used fire to generate and maintain pasture.  相似文献   
5.
We present a review of the different aspects associated with the interaction of successive coronal mass ejections (CMEs) in the corona and inner heliosphere, focusing on the initiation of series of CMEs, their interaction in the heliosphere, the particle acceleration associated with successive CMEs, and the effect of compound events on Earth’s magnetosphere. The two main mechanisms resulting in the eruption of series of CMEs are sympathetic eruptions, when one eruption triggers another, and homologous eruptions, when a series of similar eruptions originates from one active region. CME?–?CME interaction may also be associated with two unrelated eruptions. The interaction of successive CMEs has been observed remotely in coronagraphs (with the Large Angle and Spectrometric Coronagraph Experiment – LASCO – since the early 2000s) and heliospheric imagers (since the late 2000s), and inferred from in situ measurements, starting with early measurements in the 1970s. The interaction of two or more CMEs is associated with complex phenomena, including magnetic reconnection, momentum exchange, the propagation of a fast magnetosonic shock through a magnetic ejecta, and changes in the CME expansion. The presence of a preceding CME a few hours before a fast eruption has been found to be connected with higher fluxes of solar energetic particles (SEPs), while CME?–?CME interaction occurring in the corona is often associated with unusual radio bursts, indicating electron acceleration. Higher suprathermal population, enhanced turbulence and wave activity, stronger shocks, and shock?–?shock or shock?–?CME interaction have been proposed as potential physical mechanisms to explain the observed associated SEP events. When measured in situ, CME?–?CME interaction may be associated with relatively well organized multiple-magnetic cloud events, instances of shocks propagating through a previous magnetic ejecta or more complex ejecta, when the characteristics of the individual eruptions cannot be easily distinguished. CME?–?CME interaction is associated with some of the most intense recorded geomagnetic storms. The compression of a CME by another and the propagation of a shock inside a magnetic ejecta can lead to extreme values of the southward magnetic field component, sometimes associated with high values of the dynamic pressure. This can result in intense geomagnetic storms, but can also trigger substorms and large earthward motions of the magnetopause, potentially associated with changes in the outer radiation belts. Future in situ measurements in the inner heliosphere by Solar Probe+ and Solar Orbiter may shed light on the evolution of CMEs as they interact, by providing opportunities for conjunction and evolutionary studies.  相似文献   
6.
We analyze the well-observed flare and coronal mass ejection (CME) from 1 October 2011 (SOL2011-10-01T09:18) covering the complete chain of effects – from Sun to Earth – to better understand the dynamic evolution of the CME and its embedded magnetic field. We study in detail the solar surface and atmosphere associated with the flare and CME using the Solar Dynamics Observatory (SDO) and ground-based instruments. We also track the CME signature off-limb with combined extreme ultraviolet (EUV) and white-light data from the Solar Terrestrial Relations Observatory (STEREO). By applying the graduated cylindrical shell (GCS) reconstruction method and total mass to stereoscopic STEREO-SOHO (Solar and Heliospheric Observatory) coronagraph data, we track the temporal and spatial evolution of the CME in the interplanetary space and derive its geometry and 3D mass. We combine the GCS and Lundquist model results to derive the axial flux and helicity of the magnetic cloud (MC) from in situ measurements from Wind. This is compared to nonlinear force-free (NLFF) model results, as well as to the reconnected magnetic flux derived from the flare ribbons (flare reconnection flux) and the magnetic flux encompassed by the associated dimming (dimming flux). We find that magnetic reconnection processes were already ongoing before the start of the impulsive flare phase, adding magnetic flux to the flux rope before its final eruption. The dimming flux increases by more than 25% after the end of the flare, indicating that magnetic flux is still added to the flux rope after eruption. Hence, the derived flare reconnection flux is most probably a lower limit for estimating the magnetic flux within the flux rope. We find that the magnetic helicity and axial magnetic flux are lower in the interplanetary space by ~?50% and 75%, respectively, possibly indicating an erosion process. A CME mass increase of 10% is observed over a range of \({\sim}\,4\,\mbox{--}\,20~\mathrm{R}_{\odot }\). The temporal evolution of the CME-associated core-dimming regions supports the scenario that fast outflows might supply additional mass to the rear part of the CME.  相似文献   
7.
The complexation of dissolved Ni has been evaluated in a rapidly-flushed, rural estuary (Tweed, UK) by ligand exchange-adsorptive cathodic stripping voltammetry. Results suggest the presence of strongly binding ligands, L, throughout, with average stability constants of about 1019 and which are saturated by ambient Ni concentrations. Equilibrium speciation calculations incorporating these constants in WHAM, version 6, predict an increase in Ni complexation (as NiL) from about 50% of total dissolved Ni in fresh water to over 90% in sea water. Equivalent calculations using the default-mode fulvic and humic substances (FS and HS, respectively) encoded in the WHAM database predict a reduction in complexation (as NiFS + NiHS) from about 20% in fresh water to less than 1% in sea water. Discrepancies arising from the two approaches are largely attributed to the different analytical detection windows employed. Thus, a better representation of Ni complexation is derived from including both types of complexant in the speciation calculations, resulting in estimates of net complexation in excess of 60% of total dissolved Ni throughout the estuary. The uncertainties and assumptions inherent in all computations illustrate the difficulty in measuring or predicting metal complexation in estuaries.  相似文献   
8.
The Celestial Reference System (CRS) is currently realized only by Very Long Baseline Interferometry (VLBI) because it is the space geodetic technique that enables observations in that frame. In contrast, the Terrestrial Reference System (TRS) is realized by means of the combination of four space geodetic techniques: Global Navigation Satellite System (GNSS), VLBI, Satellite Laser Ranging (SLR), and Doppler Orbitography and Radiopositioning Integrated by Satellite. The Earth orientation parameters (EOP) are the link between the two types of systems, CRS and TRS. The EOP series of the International Earth Rotation and Reference Systems Service were combined of specifically selected series from various analysis centers. Other EOP series were generated by a simultaneous estimation together with the TRF while the CRF was fixed. Those computation approaches entail inherent inconsistencies between TRF, EOP, and CRF, also because the input data sets are different. A combined normal equation (NEQ) system, which consists of all the parameters, i.e., TRF, EOP, and CRF, would overcome such an inconsistency. In this paper, we simultaneously estimate TRF, EOP, and CRF from an inter-technique combined NEQ using the latest GNSS, VLBI, and SLR data (2005–2015). The results show that the selection of local ties is most critical to the TRF. The combination of pole coordinates is beneficial for the CRF, whereas the combination of \(\varDelta \hbox {UT1}\) results in clear rotations of the estimated CRF. However, the standard deviations of the EOP and the CRF improve by the inter-technique combination which indicates the benefits of a common estimation of all parameters. It became evident that the common determination of TRF, EOP, and CRF systematically influences future ICRF computations at the level of several \(\upmu \)as. Moreover, the CRF is influenced by up to \(50~\upmu \)as if the station coordinates and EOP are dominated by the satellite techniques.  相似文献   
9.
We present a simple method of forecasting the geomagnetic storms caused by high-speed streams (HSSs) in the solar wind. The method is based on the empirical correlation between the coronal hole area/position and the value of the Dst index, which is established in a period of low interplanetary coronal mass ejection (ICME) activity. On average, the highest geomagnetic activity, i.e., the minimum in Dst, occurs four days after a low-latitude coronal hole (CH) crosses the central meridian. The amplitude of the Dst dip is correlated with the CH area and depends on the magnetic polarity of the CH due to the Russell – McPherron effect. The Dst variation may be predicted by employing the expression Dst(t)=(−65±25×cos λ)[A(t *)]0.5, where A(t *) is the fractional CH area measured in the central-meridian slice [−10°,10°] of the solar disc, λ is the ecliptic longitude of the Earth, ± stands for positive/negative CH polarity, and tt *=4 days. In periods of low ICME activity, the proposed expression provides forecasting of the amplitude of the HSS-associated Dst dip to an accuracy of ≈30%. However, the time of occurrence of the Dst minimum cannot be predicted to better than ±2 days, and consequently, the overall mean relative difference between the observed and calculated daily values of Dst ranges around 50%.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号