首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   3篇
  国内免费   1篇
测绘学   3篇
大气科学   3篇
地球物理   14篇
地质学   22篇
海洋学   9篇
天文学   2篇
自然地理   4篇
  2023年   1篇
  2019年   1篇
  2018年   4篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   4篇
  2013年   4篇
  2012年   1篇
  2011年   2篇
  2010年   3篇
  2009年   4篇
  2008年   2篇
  2007年   4篇
  2006年   1篇
  2005年   4篇
  2004年   2篇
  2003年   1篇
  2002年   3篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1995年   2篇
  1992年   1篇
  1991年   1篇
  1981年   1篇
  1976年   1篇
排序方式: 共有57条查询结果,搜索用时 15 毫秒
1.
One of the most intriguing episodes in the Quaternary evolution of the Grand Canyon of the Colorado River, Arizona, was the development of vast lakes that are thought to have backed up behind lava erupted into the gorge. Stratigraphic evidence for these deep lava-dammed lakes is expectedly sparse. Possible lacustrine deposits at six areas in the eastern canyon yielded no compelling evidence for sediment deposited in a deep lake. At two of the sites the sediment was associated with late Quaternary spring-fed pools and marshes. Water-lain silt and sand at lower Havasu Creek was deposited 3000 cal yr ago. The deposit contains an ostracode assemblage similar to that living in the modern travertine-dammed pools adjacent to the outcrop. The second deposit, at Lees Ferry, formed in a spring-fed marsh 43,000 cal yr ago, as determined by 14C and amino acid geochronology. It contains abundant ostracode and mollusk fossils, the richest assemblages reported from the Grand Canyon to date. Our interpretation of these sediments as spring-fed deposits, and their relative youth, provides an alternative to the conventional view that deposits like these were formed in deep lava-dammed lakes that filled the Grand Canyon.  相似文献   
2.
Field survey of the 1994 Mindoro Island,Philippines tsunami   总被引:2,自引:0,他引:2  
This is a report of the field survey of the November 15, 1994 Mindoro Island, Philippines, tsunami generated by an earthquake (M=7.0) with a strike-slip motion. We will report runup heights from 54 locations on Luzon, Mindoro and other smaller islands in the Cape Verde passage between Mindoro and Luzon. Most of the damage was concentrated along the northern coast of Mindoro. Runup height distribution ranged 3–4 m at the most severely damaged areas and 2–4 in neighboring areas. The tsunami-affected area was limited to within 10 km of the epicenter. The largest recorded runup value of 7.3 m was measured on the southwestern coast of Baco Island while a runup of 6.1 m was detected on its northern coastline. The earthquake and tsunami killed 62 people, injured 248 and destroyed 800 houses. As observed in other recent tsunami disasters, most of the casualties were children. Nearly all eyewitnesses interviewed described the first wave as a leading-depression wave. Eyewitnesses reported that the main direction of tsunami propagation was SW in Subaang Bay, SE in Wawa and Calapan, NE on Baco Island and N on Verde Island, suggesting that the tsunami source area was in the southern Pass of Verde Island and that the wave propagated rapidly in all directions. The fault plane extended offshore to the N of Mindoro Island, with its rupture originating S of Verde Island and propagating almost directly south to the inland of Mindoro, thereby accounting for the relatively limited damage area observed on the N of Mindoro.  相似文献   
3.
Geospatial technologies and digital data have developed and disseminated rapidly in conjunction with increasing computing efficiency and Internet availability. The ability to store and transmit large datasets has encouraged the development of national infrastructure datasets in geospatial formats. National datasets are used by numerous agencies for analysis and modeling purposes because these datasets are standardized and considered to be of acceptable accuracy for national scale applications. At Oak Ridge National Laboratory a population model has been developed that incorporates national schools data as one of the model inputs. This paper evaluates spatial and attribute inaccuracies present within two national school datasets, Tele Atlas North America and National Center of Education Statistics (NCES). Schools are an important component of the population model, because they are spatially dense clusters of vulnerable populations. It is therefore essential to validate the quality of school input data. Schools were also chosen since a validated schools dataset was produced in geospatial format for Philadelphia County; thereby enabling a comparison between a local dataset and the national datasets. Analyses found the national datasets are not standardized and incomplete, containing 76 to 90 percent of existing schools. The temporal accuracy of updating annual enrollment values resulted in 89 percent inaccuracy for 2003. Spatial rectification was required for 87 percent of NCES points, of which 58 percent of the errors were attributed to the geocoding process. Lastly, it was found that by combining the two national datasets, the resultant dataset provided a more useful and accurate solution.  相似文献   
4.
Accurate reconstruction of the paleo-Mojave River and pluvial lake (Harper, Manix, Cronese, and Mojave) system of southern California is critical to understanding paleoclimate and the North American polar jet stream position over the last 500 ka. Previous studies inferred a polar jet stream south of 35°N at 18 ka and at ~ 40°N at 17–14 ka. Highstand sediments of Harper Lake, the upstream-most pluvial lake along the Mojave River, have yielded uncalibrated radiocarbon ages ranging from 24,000 to > 30,000 14C yr BP. Based on geologic mapping, radiocarbon and optically stimulated luminescence dating, we infer a ~ 45–40 ka age for the Harper Lake highstand sediments. Combining the Harper Lake highstand with other Great Basin pluvial lake/spring and marine climate records, we infer that the North American polar jet stream was south of 35°N about 45–40 ka, but shifted to 40°N by ~ 35 ka. Ostracodes (Limnocythere ceriotuberosa) from Harper Lake highstand sediments are consistent with an alkaline lake environment that received seasonal inflow from the Mojave River, thus confirming the lake was fed by the Mojave River. The ~ 45–40 ka highstand at Harper Lake coincides with a shallowing interval at downstream Lake Manix.  相似文献   
5.
In September 2008, Hurricanes Gustav and Ike generated major storm surges which impacted the Lake Pontchartrain estuary in Louisiana. This paper presents analyses of in situ measurements acquired during these storm events. The main data used in the analyses were from three bottom mounted moorings equipped with conductivity, temperature, and depth sensors, acoustic Doppler current profilers (ADCPs), and a semi-permanent laterally mounted horizontal acoustic Doppler profiler (ADP). These moorings were deployed in the three major tidal channels that connect Lake Pontchartrain with the coastal ocean. A process similar to tidal straining was observed: the vertical shear of the horizontal velocity was negligible during the inundation stage, but a shear of 0.8 m/s over a less than 5 m water column was recorded during the receding stage, 2–3 times the normal tidal oscillations. The surge reached its peak in the Industrial Canal 1.4–2.1 h before those in the other two channels. The inward flux of water lasted for a shorter time period than that of the outward flux. The inward flux was also observed to have much smaller magnitude than the outward flux (∼960–1200 vs. 2100–3100 million m3). The imbalance was believed to have been caused by the additional water into Lake Pontchartrain through some small rivers and inundation over the land plus rainfall from the hurricanes. The flux through the Industrial Canal was 8–12%, while the flux through the other two tidal passes ranged between 17% and 70% of the total, but mostly split roughly half-half of the remaining (∼88–92% of the total).  相似文献   
6.
The U.S. National Tsunami Hazard Mitigation Program (NTHMP) is a State/Federal partnership created to reduce tsunami hazards along U.S. coastlines. Established in 1996, NTHMP coordinates the efforts of five Pacific States: Alaska, California, Hawaii, Oregon, and Washington with the three Federal agencies responsible for tsunami hazard mitigation: the National Oceanic and Atmospheric Administration (NOAA), the Federal Emergency Management Agency (FEMA), and the U.S. Geological Survey (USGS). In the 7 years of the program it has, 1. established a tsunami forecasting capability for the two tsunami warning centers through the combined use of deep ocean tsunami data and numerical models; 2. upgraded the seismic network enabling the tsunami warning centers to locate and size earthquakes faster and more accurately; 3. produced 22 tsunami inundation maps covering 113 coastal communities with a population at risk of over a million people; 4. initiated a program to develop tsunami-resilient communities through awareness, education, warning dissemination, mitigation incentives, coastal planning, and construction guidelines; 5. conducted surveys that indicate a positive impact of the programs activities in raising tsunami awareness. A 17-member Steering Group consisting of representatives from the five Pacific States, NOAA, FEMA, USGS, and the National Science Foundation (NSF) guides NTHMP. The success of the program has been the result of a personal commitment by steering group members that has leveraged the total Federal funding by contributions from the States and Federal Agencies at a ratio of over six matching dollars to every NTHMP dollar. Twice yearly meetings of the steering group promote communication between scientists and emergency managers, and among the State and Federal agencies. From its initiation NTHMP has been based on the needs of coastal communities and emergency managers and has been results driven because of the cycle of year-to-year funding for the first 5 years. A major impact of the program occurred on 17 November 2003, when an Alaskan tsunami warning was canceled because real-time, deep ocean tsunami data indicated the tsunami would be non-damaging. Canceling this warning averted an evacuation in Hawaii, avoiding a loss in productivity valued at $68M.  相似文献   
7.
Wang F  Bright J 《Ground water》2004,42(5):760-766
The influence on solute transport of the small-scale spatial variation of aquifer hydraulic conductivity (K) was analyzed by comparing results from fine-grid (2 m by 2 m) simulations of a synthetic heterogeneous aquifer to those from coarse-grid (8 m by 4 m) simulations of an equivalent homogeneous aquifer. Realizations of the K field of the heterogeneous aquifer were generated, using the Monte Carlo approach, from a lognormal distribution with mean log K of 2 (K in m/d) and three levels of log K variance of 0.1, 0.5, and 1.0. Numerical simulation results show that the average standard deviation of point concentrations increased from 1.21 to 5.78 when the value of log K variance was increased from 0.1 to 1.0. The average discrepancy between modeled concentrations (obtained from a coarse-grid deterministic numerical simulation) and the actual mean point concentrations (obtained from fine-grid Monte Carlo numerical simulations) increased from 0.91 to 4.23 with the increase in log K variance. The results from this study illustrate the uncertainty in predictions from contaminant transport models due to their inability to simulate the effects of heterogeneities at scales smaller than the model grid.  相似文献   
8.
Kilometric-scale shoreline sand waves (KSSW) have been observed in the north-east flank of the Dungeness Cuspate Foreland (southeastern coast of the UK). They consist of two bumps separated by embayments with a 350–450-m spacing. We have analysed 36 shoreline surveys of 2-km length using the Discrete Fourier Transformation (DFT), from 2005 to 2016, and seven topographic surveys encompassing the intertidal zone, from 2010 to 2016. The data set shows two clear formation events. In order to test the role of high-angle waves on the KSSW formation, the 10-year wave series is propagated from the wave buoy located at 43 m depth up to a location in front of the undulations at 4 m depth using the SWAN wave model. The dominating SW waves arrive with a very high incidence angle (~ 80°) while the NE waves arrive almost shore normal. The ratio R, which measures the degree of dominance of high-angle waves with respect to low-angle waves, correlates well with the shoreline DFT magnitude values of the observed wavelength undulations. In particular, the highest R values coincide with the formation events. Finally, a linear stability model based on the one-line approximation is applied to the Dungeness profile and the 10-year propagated wave series. It predicts accurately the formation moments, with positive growth rates in the correct order of magnitude for wavelengths similar to the observed ones. All these results confirm that the shoreline undulations in Dungeness are self-organized and that the underlying formation mechanism is the high-angle wave instability. The two detected formation events provide a unique opportunity to validate the existing morphodynamic models that include such instability.  相似文献   
9.
Naegleria fowleri is a thermophilic free-living amoeba found worldwide in soils and warm freshwater. It is the causative agent of primary amebic meningoencephalitis, a nearly always fatal disease afflicting mainly children and young adults. Humans are exposed to the organism via swimming, bathing, or other recreational activity during which water is forcefully inhaled into the upper nasal passages. Although many studies have looked at the occurrence of N. fowleri in surface waters, limited information is available regarding its occurrence in groundwater and geothermally heated natural waters such as hot springs. This paper reviews the current literature related to the occurrence of N. fowleri in these waters and the methods employed for its detection. Case reports of potential groundwater exposures are also included. Despite increased interest in N. fowleri in recent years due to well-publicized cases linked to drinking water, many questions still remain unanswered. For instance, why the organism persists in some water sources and not in others is not well understood. The role of biofilms in groundwater wells and plumbing in individual buildings, and the potential for warming due to climate change to expand the occurrence of the organism into new regions, are still unclear. Additional research is needed to address these questions in order to better understand the ecology of N. fowleri and the conditions that result in greater risks to bathers.  相似文献   
10.
Techniques for characterizing the hydraulic properties and groundwater flow processes of aquifers are essential to design hydrogeologic conceptual models. In this study, rapid time series temperature profiles within open‐groundwater wells in fractured rock were measured using fiber optic distributed temperature sensing (FO‐DTS). To identify zones of active groundwater flow, two continuous electrical heating cables were installed alongside a FO‐DTS cable to heat the column of water within the well and to create a temperature difference between the ambient temperature of the groundwater in the aquifer and that within the well. Additional tests were performed to examine the effects of pumping on hydraulic fracture interconnectivity around the well and to identify zones of increased groundwater flow. High‐ and low‐resolution FO‐DTS cable configurations were examined to test the sensitivities of the technique and compared with downhole video footage and geophysical logging to confirm the zones of active groundwater flow. Two examples are presented to demonstrate the usefulness of this new technique for rapid characterization of fracture zones in open boreholes. The combination of the FO‐DTS and heating cable has excellent scope as a rapid appraisal tool for borehole construction design and improving hydrogeologic conceptual models.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号