首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7183篇
  免费   280篇
  国内免费   97篇
测绘学   215篇
大气科学   686篇
地球物理   1736篇
地质学   2525篇
海洋学   691篇
天文学   979篇
综合类   23篇
自然地理   705篇
  2021年   73篇
  2020年   84篇
  2019年   106篇
  2018年   166篇
  2017年   142篇
  2016年   193篇
  2015年   173篇
  2014年   244篇
  2013年   378篇
  2012年   302篇
  2011年   335篇
  2010年   253篇
  2009年   403篇
  2008年   374篇
  2007年   307篇
  2006年   282篇
  2005年   253篇
  2004年   251篇
  2003年   244篇
  2002年   225篇
  2001年   161篇
  2000年   174篇
  1999年   148篇
  1998年   142篇
  1997年   116篇
  1996年   106篇
  1995年   108篇
  1994年   91篇
  1993年   87篇
  1992年   73篇
  1991年   81篇
  1990年   72篇
  1989年   68篇
  1988年   60篇
  1987年   78篇
  1986年   48篇
  1985年   81篇
  1984年   94篇
  1983年   79篇
  1982年   76篇
  1981年   85篇
  1980年   71篇
  1979年   66篇
  1978年   41篇
  1977年   60篇
  1976年   68篇
  1975年   47篇
  1974年   64篇
  1973年   49篇
  1972年   30篇
排序方式: 共有7560条查询结果,搜索用时 453 毫秒
1.
Natural Resource Management (NRM) is often conducted as a partnership between government and citizens. In Australia, government agencies formulate policy and fund implementation that may be delivered on-ground by community groups (such as Landcare). Since the late 1980s, over AUS$8b of Commonwealth investment has been made in NRM. However, quantitative evidence of environmental improvements is lacking. The NRM Planning Portal has been developed to (1) provide an online spatial information system for sharing Landcare and agency data; and (2) to facilitate NRM priority setting at local and regional planning scales. While the project successfully federates Landcare NRM activity data, challenges included (1) unstructured, non-standardized data, meaning that quantitative reporting against strategic objectives is not currently possible, and (2) a lack of common understanding about the value proposition for adopting the portal approach. Demonstrating the benefit of technology adoption is a key lesson for digital NRM planning.  相似文献   
2.
When the observation of small headwater catchments in the pre-Alpine Alptal valley (central Switzerland) started in the late 1960s, the researchers were mainly interested in questions related to floods and forest management. Investigations of geomorphological processes in the steep torrent channels followed in the 1980s, along with detailed observations of biogeochemical and ecohydrological processes in individual forest stands. More recently, research in the Alptal has addressed the impacts of climate change on water supply and runoff generation. In this article, we describe, for the first time, the evolution of catchment research at Alptal, and present new analyses of long-term trends and short-term hydrologic behaviour. Hydrometeorological time series from the past 50 years show substantial interannual variability, but only minimal long-term trends, except for the ~2°C increase in mean annual air temperature over the 50-year period, and a corresponding shift towards earlier snowmelt. Similar to previous studies in larger Alpine catchments, the decadal variations in mean annual runoff in Alptal's small research catchments reflect the long-term variability in annual precipitation. In the Alptal valley, the most evident hydrological trends were observed in late spring and are related to the substantial change in the duration of the snow cover. Streamflow and water quality are highly variable within and between hydrological events, suggesting rapid shifts in flow pathways and mixing, as well as changing connectivity of runoff-generating areas. This overview illustrates how catchment research in the Alptal has evolved in response to changing societal concerns and emerging scientific questions.  相似文献   
3.
We report on the investigation of presolar grain inventories of hydrated lithic clasts in three metal-rich carbonaceous chondrites from the CR clan, Acfer 182 (CH3), Isheyevo (CH3/CBb3), and Lewis Cliff (LEW) 85332 (C3-un), as well as the carbon- and nitrogen-isotopic compositions of the fine-grained clast material. Eleven presolar silicate grains as well as nine presolar silicon carbide (SiC) grains were identified in the clasts. Presolar silicate abundances range from 4 to 22 parts per million (ppm), significantly lower than in pristine meteorites and interplanetary dust particles (IDP), and comparable to recent findings for CM2s and CR2 interchondrule matrix. SiC concentrations lie between 9 and 23 ppm, and are comparable to the values for CI, CM, and CR chondrites. The results of our investigation suggest similar alteration pathways for the clast material, the interchondrule matrix of the CR2 chondrites, and the fine-grained fraction of CM2 chondrites. Fine-grained matter of all three meteorites contains moderate to high 15N-enrichments (~50‰ ≤ δ15N ≤ ~1600‰) compared to the terrestrial value, indicating the presence of primitive organic material. We observed no correlation between 15N-enrichments and presolar dust concentrations in the clasts. This is in contrast to the findings from a suite of primitive IDPs, which display in several cases enhanced bulk 15N/14N ratios and high presolar grain abundances of several hundred or even thousand ppm. The bulk 15N/14N ratios of the clasts are comparable to the range for primitive IDPs, suggesting a nitrogen carrier less susceptible to destruction by aqueous alteration than silicate stardust.  相似文献   
4.
Impact angle plays a significant role in determining the fate of the projectile. In this study, we use a suite of hypervelocity impact experiments to reveal how impact angle affects the preservation, distribution, and physical state of projectile residues in impact craters. Diverse types of projectiles, including amorphous silicates, crystalline silicates, and aluminum, in two sizes (6.35 and 12.7 mm), were launched into blocks of copper or 6061 aluminum at speeds between 1.9 and 5.7 km s−1. Crater interiors preserve projectile residues in all cases, including conditions relevant to the asteroid belt. These residues consist of projectile fragments or projectile-rich glasses, depending on impact conditions. During oblique impacts at 30° and 45°, the uprange crater wall preserves crystalline fragments of the projectile. The fragments of water-rich projectiles such as antigorite remain hydrated. Several factors contribute to enhanced preservation on the uprange wall, including a weaker shock uprange, uprange acceleration as the shock reflects off the back of the projectile, and rapid quenching of melts along the projectile–target interface. These findings have two broader implications. First, the results suggest a new collection strategy for flyby sample return missions. Second, these results predict that the M-type asteroid Psyche should bear exogenic, impactor-derived debris.  相似文献   
5.
6.
An axisymmetric model of a cool, dynamo-active accretion disc is applied to protostellar discs. Thermally and magnetically driven outflows develop that are not collimated within 0.1 AU. In the presence of a central magnetic field from the protostar, accretion onto the protostar is highly episodic, which is in agreement with earlier work.  相似文献   
7.
We consider the evolution of certain low-mass binaries, incorporating models of (a) internal evolution, (b) tidal friction, (c) dynamo activity driven by an elementary α,Ω dynamo, (d) stellar wind driven by the activity, and (e) magnetic braking as a consequence of wind and poloidal dynamo-generated magnetic field. In some circumstances the stellar wind is found to remove mass on a nuclear timescale, as is necessary to explain some observed systems. We can hope that various uncertainties in the model may be clarified by a careful comparison of the models with such observed quantities as rotation periods. These are modified by processes (a), (b) and (e). Assuming that stellar evolution is slow, rotation rate should in some circumstances represent a balance between magnetic braking trying to slow the star down and tidal friction trying to spin it up. Preliminary attempts are promising, but indicate that some fine tuning is necessary. When there is a third body present, in an orbit which is inclined but not necessarily of short period, the eccentricity of a close binary can be strongly modified by ‘Kozai cycles’. We show that this may complicate attempts to account for spin rates of stars in close binaries.  相似文献   
8.
9.
10.
We investigate whether Earth-type habitable planets can in principle exist in the planetary system of 47 UMa. The system of 47 UMa consists of two Jupiter-size planets beyond the outer edge of the stellar habitable zone, and thus resembles our own Solar System most closely compared to all exosolar planetary systems discovered so far. Our study of habitability deliberately follows an Earth-based view according to the concept of Franck and colleagues, which assumes the long-term possibility of photosynthetic biomass production under geodynamic conditions. Consequently, a broad variety of climatological, biogeochemical, and geodynamical processes involved in the generation of photosynthesis-driven life conditions is taken into account. The stellar luminosity and the age of the star/planet system are of fundamental importance for planetary habitability. Our study considers different types of planetary continental growth models and takes into account a careful assessment of the stellar parameters. In the event of successful formation and orbital stability, two subjects of intense research, we find that Earth-type habitable planets around 47 UMa are in principle possible! The likelihood of those planets is increased if assumed that 47 UMa is relatively young (?6 Gyr) and has a relatively small stellar luminosity as permitted by the observational range of those parameters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号